generalizations of gowers theorem
play

Generalizations of Gowers Theorem Dana Barto sov a (USP) - PowerPoint PPT Presentation

Generalizations of Gowers Theorem Dana Barto sov a (USP) Aleksandra Kwiatkowska (UCLA) BWB 2014 Maresias August 25-29, 2014 This work was supported by the grant FAPESP 2013/14458-9. Dana Barto sov a Generalizations of


  1. Generalizations of Gowers’ Theorem Dana Bartoˇ sov´ a (USP) Aleksandra Kwiatkowska (UCLA) BWB 2014 Maresias August 25-29, 2014 This work was supported by the grant FAPESP 2013/14458-9. Dana Bartoˇ sov´ a Generalizations of Gowers’ Theorem

  2. Gowers’ c 0 Theorem Theorem (Gowers) Let ε > 0 and let F be any real-valued Lipschitz function on the unit sphere of c 0 . Then there is an infinite-dimensional subspace X on the unit sphere of which F varies by at most ε. Dana Bartoˇ sov´ a Generalizations of Gowers’ Theorem

  3. Gowers’ c 0 Theorem Theorem (Gowers) Let ε > 0 and let F be any real-valued Lipschitz function on the unit sphere of c 0 . Then there is an infinite-dimensional subspace X on the unit sphere of which F varies by at most ε. Theorem (Gowers) Let ε > 0 and let F be any unconditional real-valued Lipschitz function on the unit sphere of c 0 . Then there is an infinite-dimensional positive block subspace X of c 0 on the unit sphere of which F varies by at most ε. Dana Bartoˇ sov´ a Generalizations of Gowers’ Theorem

  4. Gowers’ c 0 Theorem Theorem (Gowers) Let ε > 0 and let F be any real-valued Lipschitz function on the unit sphere of c 0 . Then there is an infinite-dimensional subspace X on the unit sphere of which F varies by at most ε. Theorem (Gowers) Let ε > 0 and let F be any unconditional real-valued Lipschitz function on the unit sphere of c 0 . Then there is an infinite-dimensional positive block subspace X of c 0 on the unit sphere of which F varies by at most ε. P S ( c 0 ) - positive part of the sphere of c 0 Dana Bartoˇ sov´ a Generalizations of Gowers’ Theorem

  5. Discretization � { 1 , (1 + ε ) − 1 , . . . , (1 + ε ) − ( k − 1) } , | supp( f ) | < ℵ 0 , { f : N ∃ n ∈ N f ( n ) = 1 } =: FIN k - (2 · ε )-net in P S ( c 0 ) (for sufficiently large k ) Dana Bartoˇ sov´ a Generalizations of Gowers’ Theorem

  6. Discretization � { 1 , (1 + ε ) − 1 , . . . , (1 + ε ) − ( k − 1) } , | supp( f ) | < ℵ 0 , { f : N ∃ n ∈ N f ( n ) = 1 } =: FIN k - (2 · ε )-net in P S ( c 0 ) (for sufficiently large k ) F ( S ( c 0 )) ⊂ [ a, b ) = I 1 ∪ I 2 ∪ . . . ∪ I r - | I i | = | I j | ( a + rε ≥ b ) Dana Bartoˇ sov´ a Generalizations of Gowers’ Theorem

  7. Discretization � { 1 , (1 + ε ) − 1 , . . . , (1 + ε ) − ( k − 1) } , | supp( f ) | < ℵ 0 , { f : N ∃ n ∈ N f ( n ) = 1 } =: FIN k - (2 · ε )-net in P S ( c 0 ) (for sufficiently large k ) F ( S ( c 0 )) ⊂ [ a, b ) = I 1 ∪ I 2 ∪ . . . ∪ I r - | I i | = | I j | ( a + rε ≥ b ) f ∈ FIN k � ( c ( f ) = i ← → F ( f ) ∈ I i ) Dana Bartoˇ sov´ a Generalizations of Gowers’ Theorem

  8. FIN k � { 0 , 1 , 2 . . . , k } � supp( p ) = { n : p ( n ) � = 0 } p : N Dana Bartoˇ sov´ a Generalizations of Gowers’ Theorem

  9. FIN k � { 0 , 1 , 2 . . . , k } � supp( p ) = { n : p ( n ) � = 0 } p : N � { 0 , 1 , . . . , k } : | supp( p ) | < ℵ 0 & ∃ n ( p ( n ) = k ) } FIN k = { p : N Dana Bartoˇ sov´ a Generalizations of Gowers’ Theorem

  10. FIN k � { 0 , 1 , 2 . . . , k } � supp( p ) = { n : p ( n ) � = 0 } p : N � { 0 , 1 , . . . , k } : | supp( p ) | < ℵ 0 & ∃ n ( p ( n ) = k ) } FIN k = { p : N FIN 1 ↔ FIN( N ) Dana Bartoˇ sov´ a Generalizations of Gowers’ Theorem

  11. FIN k � { 0 , 1 , 2 . . . , k } � supp( p ) = { n : p ( n ) � = 0 } p : N � { 0 , 1 , . . . , k } : | supp( p ) | < ℵ 0 & ∃ n ( p ( n ) = k ) } FIN k = { p : N FIN 1 ↔ FIN( N ) Tetris � FIN k − 1 T : FIN k Dana Bartoˇ sov´ a Generalizations of Gowers’ Theorem

  12. FIN k � { 0 , 1 , 2 . . . , k } � supp( p ) = { n : p ( n ) � = 0 } p : N � { 0 , 1 , . . . , k } : | supp( p ) | < ℵ 0 & ∃ n ( p ( n ) = k ) } FIN k = { p : N FIN 1 ↔ FIN( N ) Tetris � FIN k − 1 T : FIN k T(p)(n)=max { 0,p(n)-1 } . Dana Bartoˇ sov´ a Generalizations of Gowers’ Theorem

  13. FIN k � { 0 , 1 , 2 . . . , k } � supp( p ) = { n : p ( n ) � = 0 } p : N � { 0 , 1 , . . . , k } : | supp( p ) | < ℵ 0 & ∃ n ( p ( n ) = k ) } FIN k = { p : N FIN 1 ↔ FIN( N ) Tetris � FIN k − 1 T : FIN k T(p)(n)=max { 0,p(n)-1 } . Partial addition � p + q ( n ) = max { p ( n ) , q ( n ) } supp( p ) ∩ supp( q ) = ∅ Dana Bartoˇ sov´ a Generalizations of Gowers’ Theorem

  14. Hindman’s Theorem FIN 1 ↔ FIN( N ) Dana Bartoˇ sov´ a Generalizations of Gowers’ Theorem

  15. Hindman’s Theorem FIN 1 ↔ FIN( N ) � p + q = p ∪ q p ∩ q = ∅ Dana Bartoˇ sov´ a Generalizations of Gowers’ Theorem

  16. Hindman’s Theorem FIN 1 ↔ FIN( N ) � p + q = p ∪ q p ∩ q = ∅ T ( p ) = ∅ Dana Bartoˇ sov´ a Generalizations of Gowers’ Theorem

  17. Hindman’s Theorem FIN 1 ↔ FIN( N ) � p + q = p ∪ q p ∩ q = ∅ T ( p ) = ∅ Theorem (Hindman) � { 1 , 2 , . . . , r } be a finite colouring. Then there Let c : FIN( N ) is an infinite A ⊂ FIN( N ) such that FU(A) is monochromatic. Dana Bartoˇ sov´ a Generalizations of Gowers’ Theorem

  18. Gowers’ for FIN k Block sequence B = ( b i ) ∞ i =1 ⊂ FIN k ( N ) s.t. max supp( b i ) < min supp( b i +1 ) Dana Bartoˇ sov´ a Generalizations of Gowers’ Theorem

  19. Gowers’ for FIN k Block sequence B = ( b i ) ∞ i =1 ⊂ FIN k ( N ) s.t. max supp( b i ) < min supp( b i +1 ) � B � - partial subsemigroup generated by B, T, + , i.e. elements of the form Dana Bartoˇ sov´ a Generalizations of Gowers’ Theorem

  20. Gowers’ for FIN k Block sequence B = ( b i ) ∞ i =1 ⊂ FIN k ( N ) s.t. max supp( b i ) < min supp( b i +1 ) � B � - partial subsemigroup generated by B, T, + , i.e. elements of the form l � T j s ( b s ) s =1 for some l ∈ N , b s ∈ B, j s ∈ { 0 , 1 , . . . , k } , and at least one j s = 0 . Dana Bartoˇ sov´ a Generalizations of Gowers’ Theorem

  21. Gowers’ for FIN k Block sequence B = ( b i ) ∞ i =1 ⊂ FIN k ( N ) s.t. max supp( b i ) < min supp( b i +1 ) � B � - partial subsemigroup generated by B, T, + , i.e. elements of the form l � T j s ( b s ) s =1 for some l ∈ N , b s ∈ B, j s ∈ { 0 , 1 , . . . , k } , and at least one j s = 0 . Theorem (Gowers) � { 1 , 2 , . . . , r } be a finite colouring. Then there is Let c : FIN k an infinite block sequence B ⊂ FIN k such that � B � is monochromatic. Dana Bartoˇ sov´ a Generalizations of Gowers’ Theorem

  22. Finite Gowers’ FIN k Theorem Theorem For every k, m, r, there exists n such that for every colouring � { 1 , 2 , . . . , r } there is a block sequence c : FIN k ( n ) B ⊂ FIN k ( n ) of length m such that � B � is monochromatic. Dana Bartoˇ sov´ a Generalizations of Gowers’ Theorem

  23. Finite Gowers’ FIN k Theorem Theorem For every k, m, r, there exists n such that for every colouring � { 1 , 2 , . . . , r } there is a block sequence c : FIN k ( n ) B ⊂ FIN k ( n ) of length m such that � B � is monochromatic. g k ( m, r ) - smallest such n Dana Bartoˇ sov´ a Generalizations of Gowers’ Theorem

  24. Finite Gowers’ FIN k Theorem Theorem For every k, m, r, there exists n such that for every colouring � { 1 , 2 , . . . , r } there is a block sequence c : FIN k ( n ) B ⊂ FIN k ( n ) of length m such that � B � is monochromatic. g k ( m, r ) - smallest such n Theorem (Tyros) g k ( m, r ) upper bounded by a primitive recursive function belonging to the class E 7 of Grzegorczyk’s hierarchy. Dana Bartoˇ sov´ a Generalizations of Gowers’ Theorem

  25. Finite Gowers’ FIN k Theorem Theorem For every k, m, r, there exists n such that for every colouring � { 1 , 2 , . . . , r } there is a block sequence c : FIN k ( n ) B ⊂ FIN k ( n ) of length m such that � B � is monochromatic. g k ( m, r ) - smallest such n Theorem (Tyros) g k ( m, r ) upper bounded by a primitive recursive function belonging to the class E 7 of Grzegorczyk’s hierarchy. Theorem (Ojeda-Aristizabal) g k ( m, 2) ≤ f 4+2( k − 1) ◦ f 4 (6 m − 2) , where f i is the i -th function in the Ackermann Hierarchy. Dana Bartoˇ sov´ a Generalizations of Gowers’ Theorem

  26. Type is a φ ∈ FIN k ( d ) such that φ ( i ) � = φ ( i + 1) . Dana Bartoˇ sov´ a Generalizations of Gowers’ Theorem

  27. Type is a φ ∈ FIN k ( d ) such that φ ( i ) � = φ ( i + 1) . If A = ( a i ) d i =1 is a block sequence in FIN 1 ( n ) , then Dana Bartoˇ sov´ a Generalizations of Gowers’ Theorem

  28. Type is a φ ∈ FIN k ( d ) such that φ ( i ) � = φ ( i + 1) . If A = ( a i ) d i =1 is a block sequence in FIN 1 ( n ) , then d � φ ( i ) · χ ( a i ) ∈ FIN k ( n ) i =1 Dana Bartoˇ sov´ a Generalizations of Gowers’ Theorem

  29. Type is a φ ∈ FIN k ( d ) such that φ ( i ) � = φ ( i + 1) . If A = ( a i ) d i =1 is a block sequence in FIN 1 ( n ) , then d � φ ( i ) · χ ( a i ) ∈ FIN k ( n ) i =1 p ∈ FIN k ( n ) � ∃ φ ∈ FIN k ( d ) a type and ( a i ) d i =1 in FIN 1 ( n ) . Dana Bartoˇ sov´ a Generalizations of Gowers’ Theorem

  30. Type is a φ ∈ FIN k ( d ) such that φ ( i ) � = φ ( i + 1) . If A = ( a i ) d i =1 is a block sequence in FIN 1 ( n ) , then d � φ ( i ) · χ ( a i ) ∈ FIN k ( n ) i =1 p ∈ FIN k ( n ) � ∃ φ ∈ FIN k ( d ) a type and ( a i ) d i =1 in FIN 1 ( n ) . d � p = φ ( i ) χ ( a i ) i =1 Dana Bartoˇ sov´ a Generalizations of Gowers’ Theorem

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend