lecture 6 mimo channel and spatial multiplexing
play

Lecture 6: MIMO Channel and Spatial Multiplexing I-Hsiang - PowerPoint PPT Presentation

Lecture 6: MIMO Channel and Spatial Multiplexing I-Hsiang Wang ihwang@ntu.edu.tw 5/1, 2014 Mutliple Antennas Multi-Antennas so far: - Provide diversity gain and increase reliability - Provide power gain via


  1. Lecture ¡6: ¡MIMO ¡Channel ¡and ¡ Spatial ¡Multiplexing I-Hsiang Wang ihwang@ntu.edu.tw 5/1, 2014

  2. Mutliple ¡Antennas • Multi-Antennas so far: - Provide diversity gain and increase reliability - Provide power gain via beamforming (Rx, Tx, opportunistic) • But no degrees of freedom (DoF) gain - because at high SNR the capacity curves have the same slope - DoF gain is more significant in the high SNR regime • MIMO channels have a potential to provide DoF gain by spatially multiplexing multiple data streams • Key questions: - How the spatial multiplexing capability depends on the physical environment? - How to establish statistical models that capture the properties succinctly? 2

  3. Plot • First study the spatial multiplexing capability of MIMO: - Convert a MIMO channel to parallel channel via SVD - Identify key factors for DoF gain: rank and condition number • Then explore physical modeling of MIMO with examples: - Angular resolvability - Multipath provides DoF gain • Finally study statistical modeling of MIMO channels: - Spatial domain vs. angular domain - Analogy with time-frequency channel modeling (Lecture 1) 3

  4. Outline • Spatial multiplexing capability of MIMO systems • Physical modeling of MIMO channels • Statistical modeling of MIMO channels 4

  5. Spatial ¡Multiplexing ¡in ¡ MIMO ¡Systems 5

  6. MIMO ¡AWGN ¡Channel • MIMO AWGN channel (no fading): y [ m ] = Hx [ m ] + w [ m ] - y [ m ] ∈ C n r , x [ m ] ∈ C n t , H ∈ C n r × n t , w ∼ CN (0 , I n r ) - n t := # of Tx antennas; n r := # of Rx antennas - Tx power constraint P • Singular value decomposition (SVD) of matrix H : H = U Λ V ∗ - U ∈ C n r × n r , V ∈ C n t × n t ( UU ∗ = U ∗ U = I ) Unitary - Rectangular � � � � with zero off-diagonal elements and Λ ∈ C n r × n t diagonal elements λ 1 ≥ λ 2 ≥ · · · ≥ λ min( n t ,n r ) ≥ 0 - These λ ’s are the singular values of matrix H 6

  7. MIMO ¡Capacity ¡via ¡SVD • Change of coordinate: y = Hx + w = U Λ V ∗ x + w ⇐ ⇒ U ∗ y = Λ V ∗ x + U ∗ w - Let � � y := U ∗ y , e � � x := V ∗ x , e � � � w := U ∗ w � � � , get an equivalent channel e y = Λ e e x + e w - Power of x and w are preserved since U and V are unitary • Parallel channel: since the off-diagonal entries of Λ are all zero, the above vector channel consists of n min := min{ n t , n r } parallel channels: y i = λ i e e x i + e w i , i = 1 , 2 , . . . , n min - Capacity can be found via water-filling 7

  8. Spatially ¡Parallel ¡Channels w H y x H = U Λ V ∗ λ 1 e w 1 y ... x V * U * V U e e x y λ n min e w n min 8

  9. Multiplexing ¡over ¡Parallel ¡Channels ~ ~ { x 1 [ m ]} { y 1 [ m ]} AWGN Decoder coder . . n min . { w [ m ]} . information . . streams ~ ~ { x n min [ m ]} { y n min [ m ]} AWGN U * H V + Decoder coder {0} . . . {0} n min 1 + λ 2 ◆ + n min ✓ ◆ i P ∗ ν − σ 2 ✓ X i X C MIMO = log P ∗ P ∗ i = ν satisfies i = P , σ 2 λ 2 i =1 i i =1 9

  10. Rank ¡= ¡# ¡of ¡Multiplexing ¡Channels λ 1 e w 1 y ... x V * U * V U e e x y λ n min e w n min • If λ i = 0 ⟹ the i -th channel contributes 0 to the capacity • Rank of H = # of non-zero singular values k 1 + λ 2 ✓ ◆ i P ∗ X i C MIMO = log k := rank ( H ) , σ 2 i =1 10

  11. Rank ¡= ¡# ¡of ¡Multiplexing ¡Channels • DoF gain is more significant at high SNR • At high SNR, uniform power allocation is near-optimal: k k 1 + λ 2 ✓ λ 2 ✓ ◆ ◆ i P i P X X C MIMO ≈ log log ≈ k σ 2 k σ 2 i =1 i =1 k ✓ λ 2 ◆ X i = k log SNR + log k i =1 • Rank of H determines how many data streams can be multiplexed over the channel ⟹ k := multiplexing gain • Full rank matrix is the best ( ∵ k ≤ n min ) 11

  12. Condition ¡Number • Full rank is not enough: k ✓ λ 2 ◆ X i C MIMO ≈ k log SNR + log k i =1 - If the some λ i < 1 , then log( λ i 2 / k ) will be negative - How to maximize the second term? P k ! k i =1 λ 2 ✓ λ 2 ◆ 1 • By Jensen’s inequality: X i i log ≤ log k 2 k k i =1 - i,j | h i,j | 2 For a family of full-rank channel matrices with fixed � P � � , i,j | h i,j | 2 = Tr ( HH ∗ ) = P k i =1 λ 2 since �� � � � � � � � � � , maximum is attained P i when all λ ’s are equal ⟺ λ max = λ min • Well-conditioned (smaller condition number λ max / λ min ) ones attain higher capacity 12

  13. Key ¡Channel ¡Parameters ¡for ¡MIMO • Rank of channel matrix H - Rank of H determines how many data streams can be multiplexed over the channel • Condition number of channel matrix H - An ill-conditioned full-rank channel can have smaller capacity than that of a rank-deficient channel 13

  14. Physical ¡Modeling ¡of ¡ MIMO ¡Channels 14

  15. Line-­‑of-­‑Sight ¡SIMO ¡Channel d φ ∆ r λ c carrier wavelength: λ c d i ... φ antenna spacing: ∆ r λ c Rx antenna i channel to i -th antenna: y = h x + w ... = ae − j 2 π di h i = ae − j 2 π fcdi λ c c - If distance d ≫ antenna distance spread, then d i = d + ( i − 1) ∆ r λ c cos φ , ∀ i = 1 , 2 , . . . , n r - Phase difference between consecutive antennas is 2 π ∆ r cos φ - e − j 2 π ( n r − 1) ∆ r cos φ ⇤ T h = ae − j 2 π d ⟹ e − j 2 π ∆ r cos φ λ c ⇥ 1 · · · - Channel vector h lies along the direction e r ( Ω ) , where 1 e − j 2 π ( n r − 1) ∆ r Ω ⇤ T e − j 2 π ∆ r Ω ⇥ Ω := cos φ , e r ( Ω ) := 1 · · · √ n r directional cosine 15

  16. Line-­‑of-­‑Sight ¡MISO ¡Channel ... d i Tx antenna i φ ∆ t λ c y = h ∗ x + w d ... φ - If distance d ≫ antenna distance spread, then d i = d − ( i − 1) ∆ t λ c cos φ , ∀ i = 1 , 2 , . . . , n t - Phase difference between consecutive antennas is − 2 π ∆ t cos φ - e − j 2 π ( n t − 1) ∆ t cos φ ⇤ T h = ae j 2 π d ⟹ e − j 2 π ∆ t cos φ λ c ⇥ 1 · · · - Channel vector h lies along the direction e t ( Ω ) , where 1 e − j 2 π ( n t − 1) ∆ t Ω ⇤ T e − j 2 π ∆ t Ω ⇥ Ω := cos φ , e t ( Ω ) := 1 · · · √ n t directional cosine 16

  17. Line-­‑of-­‑Sight ¡SIMO ¡and ¡MISO • Line-of-sight SIMO: - y = h x + w , h is along the receive spatial signature e r ( Ω ) , where 1 e − j 2 π ( n r − 1) ∆ r Ω ⇤ T e − j 2 π ∆ r Ω ⇥ e r ( Ω ) := 1 · · · √ n r - n r -fold power gain, no DoF gain • Line-of-sight MISO: - y = h * x + w , h is along the transmit spatial signature e t ( Ω ) , where 1 e − j 2 π ( n t − 1) ∆ t Ω ⇤ T e − j 2 π ∆ t Ω ⇥ e t ( Ω ) := 1 · · · √ n t - n t -fold power gain, no DoF gain 17

  18. Line-­‑of-­‑Sight ¡MIMO ¡Channel d Tx k y = Hx + w ... ... d i,k Rx i d i,k = d + ( i − 1) ∆ r λ c cos φ r − ( k − 1) ∆ t λ c cos φ t ⇒ h i,k = ae − j 2 π d λ c e − j 2 π ( i − 1) ∆ r Ω r e j 2 π ( k − 1) ∆ t Ω t = λ c √ n t n r e r ( Ω r ) e t ( Ω t ) ∗ H = ae − j 2 π d = ⇒ • Rank of H = 1 ⟹ no spatial multiplexing gain! • In line-of-sight MIMO, still power gain ( n t × n r -fold) only 18

  19. The ¡Need ¡of ¡Multi-­‑Paths • Line-of-sight environment: only power gain, no DoF gain • Reason: there is only single path - Because Tx/Rx antennas are co-located • Multi-paths are needed in order to get DoF gain • Multi-paths are common due to reflections 19

  20. Single ¡ReWlector, ¡Two-­‑Paths ¡MIMO ¡(1) y = Hx + w Tx antenna 1 φ t 1 φ t 2 Rx antenna 1 φ r 2 φ r 1 • Two paths: - H 1 = a 1 e − j 2 π d 1 λ c √ n t n r e r ( Ω r 1 ) e t ( Ω t 1 ) ∗ Path 1: - H 2 = a 2 e − j 2 π d 2 Path 2: λ c √ n t n r e r ( Ω r 2 ) e t ( Ω t 2 ) ∗ - By the linear superposition principle, we get the channel matrix 1 e r ( Ω r 1 ) e t ( Ω t 1 ) ∗ + a b H = a b i := a i e − j 2 π di 2 e r ( Ω r 2 ) e t ( Ω t 2 ) ∗ a b λ c √ n t n r • rank( H ) = 2 ⟺ e r ( Ω r 1 ) ∦ e r ( Ω r 2 ) and e t ( Ω t 1 ) ∦ e t ( Ω t 2 ) : - Ω r := Ω r 2 – Ω r 1 ≠ 0 �� mod 1/ Δ r - Ω t := Ω t 2 – Ω t 1 ≠ 0 �� mod 1/ Δ t 20

  21. Single ¡ReWlector, ¡Two-­‑Paths ¡MIMO ¡(2) y = Hx + w A Tx antenna 1 φ t 1 φ t 2 B Rx antenna 1 φ r 2 φ r 1 1 e r ( Ω r 1 ) e t ( Ω t 1 ) ∗ + a b H = a b 2 e r ( Ω r 2 ) e t ( Ω t 2 ) ∗ • Question: what affects the condition number of H ? • To understand better, let us place two virtual antennas at A and B, and break down the system into two stages: - Tx antenna array to {A,B} and {A,B} to Rx antenna array -  e t ( Ω t 1 ) ∗ � H = H r H t , where a b a b ⇥ ⇤ H r = 1 e r ( Ω r 1 ) 2 e r ( Ω r 2 ) H t = , e t ( Ω t 2 ) ∗ - Note: {A,B} form a geographically separated virtual antenna array 21

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend