lecture 3 applied harmonic analysis and compressed sensing
play

Lecture 3: Applied Harmonic Analysis and Compressed Sensing Gitta - PowerPoint PPT Presentation

Lecture 3: Applied Harmonic Analysis and Compressed Sensing Gitta Kutyniok (Technische Universit at Berlin) Winter School on Compressed Sensing, TU Berlin December 35, 2015 Gitta Kutyniok (TU Berlin) Lecture 3 Winter School 2015


  1. Lecture 3: Applied Harmonic Analysis and Compressed Sensing Gitta Kutyniok (Technische Universit¨ at Berlin) Winter School on “Compressed Sensing”, TU Berlin December 3–5, 2015 Gitta Kutyniok (TU Berlin) Lecture 3 Winter School 2015 1 / 32

  2. Fourier Sampling Important Situation: Pointwise Samples of the Fourier transform! Applications: Magnetic Resonance Imaging (MRI) Electron Microscopy Fourier Optics X-ray Computed Tomography Reflection Seismology ... Common Model: Let f ∈ L 2 ( R 2 ) with additional regularity assumptions, and ∆ ⊆ Z 2 . Reconstruct f from (ˆ e n ( x ) := e 2 π i � x , n � . f ( n )) n ∈ ∆ = ( � f , e n � ) n ∈ ∆ , Gitta Kutyniok (TU Berlin) Lecture 3 Winter School 2015 2 / 32

  3. Sampling of Fourier Data (Source: Lim; 2014) Gitta Kutyniok (TU Berlin) Lecture 3 Winter School 2015 3 / 32

  4. General Sampling Strategy Fourier measurements: − → Sampling Scheme? f �→ ( � f , e n � ) n ∈ ∆ . Orthonormal basis: − → Choice of { ψ λ } λ ∈ Λ ? { ψ λ } λ ∈ Λ . Sparse representation: − → Model for f ? � f = c λ ψ λ . λ ∈ Λ Reconstruction: − → Reconstruction Algorithm? � � � � f , e n � = � ψ λ , e n � c λ �→ ( c λ ) λ ∈ Λ . λ ∈ Λ n ∈ ∆ Gitta Kutyniok (TU Berlin) Lecture 3 Winter School 2015 4 / 32

  5. General Sampling Strategy Fourier measurements: − → Sampling Scheme? f �→ ( � f , e n � ) n ∈ ∆ . Orthonormal basis: − → Choice of { ψ λ } λ ∈ Λ ? { ψ λ } λ ∈ Λ . Sparse representation: − → Model for f ? � f = c λ ψ λ . λ ∈ Λ Reconstruction: − → Reconstruction Algorithm? � � � � f , e n � = � ψ λ , e n � c λ �→ ( c λ ) λ ∈ Λ . λ ∈ Λ n ∈ ∆ Gitta Kutyniok (TU Berlin) Lecture 3 Winter School 2015 4 / 32

  6. General Sampling Strategy Fourier measurements: − → Sampling Scheme? f �→ ( � f , e n � ) n ∈ ∆ . Orthonormal basis: − → Choice of { ψ λ } λ ∈ Λ ? { ψ λ } λ ∈ Λ . Sparse representation: − → Model for f ? � f = c λ ψ λ . λ ∈ Λ Reconstruction: − → Reconstruction Algorithm? � � � � f , e n � = � ψ λ , e n � c λ �→ ( c λ ) λ ∈ Λ . λ ∈ Λ n ∈ ∆ Gitta Kutyniok (TU Berlin) Lecture 3 Winter School 2015 4 / 32

  7. General Sampling Strategy Fourier measurements: − → Sampling Scheme? f �→ ( � f , e n � ) n ∈ ∆ . Orthonormal basis: − → Choice of { ψ λ } λ ∈ Λ ? { ψ λ } λ ∈ Λ . Sparse representation: − → Model for f ? � f = c λ ψ λ . λ ∈ Λ Reconstruction: − → Reconstruction Algorithm? � � � � f , e n � = � ψ λ , e n � c λ �→ ( c λ ) λ ∈ Λ . λ ∈ Λ n ∈ ∆ Gitta Kutyniok (TU Berlin) Lecture 3 Winter School 2015 4 / 32

  8. General Sampling Strategy Fourier measurements: − → Sampling Scheme? f �→ ( � f , e n � ) n ∈ ∆ . Orthonormal basis: − → Choice of { ψ λ } λ ∈ Λ ? { ψ λ } λ ∈ Λ . Sparse representation: − → Model for f ? � f = c λ ψ λ . λ ∈ Λ Reconstruction: − → Reconstruction Algorithm? � � � � f , e n � = � ψ λ , e n � c λ �→ ( c λ ) λ ∈ Λ . λ ∈ Λ n ∈ ∆ Gitta Kutyniok (TU Berlin) Lecture 3 Winter School 2015 4 / 32

  9. Compressed Sensing Type Approaches Lustig, Donoho, Pauly; 2007 � Sparse MRI: Spirals, L 2 ( R 2 ), Wavelets, ℓ 1 . g | ∆ − ˆ min g � Ψ g � 1 s.t. � ˆ f | ∆ � 2 ≤ ε. Gitta Kutyniok (TU Berlin) Lecture 3 Winter School 2015 5 / 32

  10. Compressed Sensing Type Approaches Lustig, Donoho, Pauly; 2007 � Sparse MRI: Spirals, L 2 ( R 2 ), Wavelets, ℓ 1 . g | ∆ − ˆ min g � Ψ g � 1 s.t. � ˆ f | ∆ � 2 ≤ ε. Krahmer, Ward; 2014 � Variable Density Sampling, C N × N , Haar Wavelets, TV. Gitta Kutyniok (TU Berlin) Lecture 3 Winter School 2015 5 / 32

  11. Compressed Sensing Type Approaches Lustig, Donoho, Pauly; 2007 � Sparse MRI: Spirals, L 2 ( R 2 ), Wavelets, ℓ 1 . g | ∆ − ˆ min g � Ψ g � 1 s.t. � ˆ f | ∆ � 2 ≤ ε. Krahmer, Ward; 2014 � Variable Density Sampling, C N × N , Haar Wavelets, TV. Adcock, Hansen, K, Ma; 2014 � Block Sampling, L 2 ( R 2 ), Wavelets, Generalized Sampling. Gitta Kutyniok (TU Berlin) Lecture 3 Winter School 2015 5 / 32

  12. Compressed Sensing Type Approaches Lustig, Donoho, Pauly; 2007 � Sparse MRI: Spirals, L 2 ( R 2 ), Wavelets, ℓ 1 . g | ∆ − ˆ min g � Ψ g � 1 s.t. � ˆ f | ∆ � 2 ≤ ε. Krahmer, Ward; 2014 � Variable Density Sampling, C N × N , Haar Wavelets, TV. Adcock, Hansen, K, Ma; 2014 � Block Sampling, L 2 ( R 2 ), Wavelets, Generalized Sampling. Adcock, Hansen, Poon, Roman; 2014 � Multilevel Sampling, H , ONS, ℓ 1 . Gitta Kutyniok (TU Berlin) Lecture 3 Winter School 2015 5 / 32

  13. Compressed Sensing Type Approaches Lustig, Donoho, Pauly; 2007 � Sparse MRI: Spirals, L 2 ( R 2 ), Wavelets, ℓ 1 . g | ∆ − ˆ min g � Ψ g � 1 s.t. � ˆ f | ∆ � 2 ≤ ε. Krahmer, Ward; 2014 � Variable Density Sampling, C N × N , Haar Wavelets, TV. Adcock, Hansen, K, Ma; 2014 � Block Sampling, L 2 ( R 2 ), Wavelets, Generalized Sampling. Adcock, Hansen, Poon, Roman; 2014 � Multilevel Sampling, H , ONS, ℓ 1 . Shi, Yin, Sankaranarayanan, Baraniuk; 2014 � Dynamic MRI: Variable Density Sampling, R × R n , Wavelets, ℓ 1 . ... Gitta Kutyniok (TU Berlin) Lecture 3 Winter School 2015 5 / 32

  14. Appropriate Notion of Optimality? Ingredients: Continuum Model C ⊆ L 2 ( R 2 ). ◮ Acquiring data in a continuous world. ◮ Optimal best N -term approximation rate: � f − f N � 2 � N − α as N → ∞ for all f ∈ C , where f N = � λ ∈ Λ N c λ ψ λ for some frame ( ψ λ ) λ ∈ Λ ⊆ L 2 ( R 2 ). Gitta Kutyniok (TU Berlin) Lecture 3 Winter School 2015 6 / 32

  15. Appropriate Notion of Optimality? Ingredients: Continuum Model C ⊆ L 2 ( R 2 ). ◮ Acquiring data in a continuous world. ◮ Optimal best N -term approximation rate: � f − f N � 2 � N − α as N → ∞ for all f ∈ C , where f N = � λ ∈ Λ N c λ ψ λ for some frame ( ψ λ ) λ ∈ Λ ⊆ L 2 ( R 2 ). Sampling Schemes ∆ M ⊆ Z 2 , #∆ M = M and M → ∞ . Gitta Kutyniok (TU Berlin) Lecture 3 Winter School 2015 6 / 32

  16. Appropriate Notion of Optimality? Ingredients: Continuum Model C ⊆ L 2 ( R 2 ). ◮ Acquiring data in a continuous world. ◮ Optimal best N -term approximation rate: � f − f N � 2 � N − α as N → ∞ for all f ∈ C , where f N = � λ ∈ Λ N c λ ψ λ for some frame ( ψ λ ) λ ∈ Λ ⊆ L 2 ( R 2 ). Sampling Schemes ∆ M ⊆ Z 2 , #∆ M = M and M → ∞ . Reconstruction Procedure R : C × ∆ → L 2 ( R 2 ), ∆ = � M { ∆ M } . Gitta Kutyniok (TU Berlin) Lecture 3 Winter School 2015 6 / 32

  17. Appropriate Notion of Optimality? Ingredients: Continuum Model C ⊆ L 2 ( R 2 ). ◮ Acquiring data in a continuous world. ◮ Optimal best N -term approximation rate: � f − f N � 2 � N − α as N → ∞ for all f ∈ C , where f N = � λ ∈ Λ N c λ ψ λ for some frame ( ψ λ ) λ ∈ Λ ⊆ L 2 ( R 2 ). Sampling Schemes ∆ M ⊆ Z 2 , #∆ M = M and M → ∞ . Reconstruction Procedure R : C × ∆ → L 2 ( R 2 ), ∆ = � M { ∆ M } . Asymptotic Optimality: We call a sampling-reconstruction scheme ( C , ∆ , R ) asymptotically optimal, if, for all f ∈ C , � f − R ( f , ∆ M ) � 2 � M − α as M → ∞ . Gitta Kutyniok (TU Berlin) Lecture 3 Winter School 2015 6 / 32

  18. Let’s start with a suitable Model... Gitta Kutyniok (TU Berlin) Lecture 3 Winter School 2015 7 / 32

  19. Anisotropic/Cartoon Structures Images: Governing structure in images. Justified by neurophysiology. Field et al., 1993 Definition (Donoho; 2001): The set of cartoon-like functions E 2 ( R 2 ) is defined by E 2 ( R 2 ) = { f ∈ L 2 ( R 2 ) : f = f 0 + f 1 · χ B } , where B ⊂ [0 , 1] 2 with ∂ B a closed C 2 -curve, f 0 , f 1 ∈ C 2 0 ([0 , 1] 2 ). Theorem (Donoho; 2001): Let ( ψ λ ) λ ⊆ L 2 ( R 2 ) be a frame. Then the optimal asymptotic approximation error of f ∈ E 2 ( R 2 ) is � � f − f N � 2 2 ≍ N − 2 , N → ∞ , where f N = c λ ψ λ . λ ∈ Λ N Gitta Kutyniok (TU Berlin) Lecture 3 Winter School 2015 8 / 32

  20. General Sampling Strategy Fourier measurements: − → Sampling Scheme? f �→ ( � f , e n � ) n ∈ ∆ . Orthonormal basis: − → Choice of { ψ λ } λ ∈ Λ ? { ψ λ } λ ∈ Λ . Sparse representation: − → Model for f ? � f = c λ ψ λ . λ ∈ Λ Reconstruction: − → Reconstruction Algorithm? � � � � f , e n � = � ψ λ , e n � c λ �→ ( c λ ) λ ∈ Λ . λ ∈ Λ n ∈ ∆ Gitta Kutyniok (TU Berlin) Lecture 3 Winter School 2015 9 / 32

  21. General Sampling Strategy Fourier measurements: − → Sampling Scheme? f �→ ( � f , e n � ) n ∈ ∆ . Orthonormal basis: − → Choice of { ψ λ } λ ∈ Λ ? { ψ λ } λ ∈ Λ . Sparse representation: � f = c λ ψ λ , where f is a cartoon-like function. λ ∈ Λ Reconstruction: − → Reconstruction Algorithm? � � � � f , e n � = � ψ λ , e n � c λ �→ ( c λ ) λ ∈ Λ . λ ∈ Λ n ∈ ∆ Gitta Kutyniok (TU Berlin) Lecture 3 Winter School 2015 9 / 32

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend