lecture 1 introduction to the problem of regularity
play

Lecture 1 - Introduction to the problem of regularity Giuseppe Di - PowerPoint PPT Presentation

R EGULARITY FOR ELLIPTIC EQUATIONS UNDER MINIMAL ASSUMPTIONS G.Di Fazio Dipartimento di Matematica e Informatica Universit` a di Catania 13-17th August 2018 MYSAGA Bandung Indonesia Giuseppe Di Fazio (University of Catania) 1 /


  1. Lecture 2 G OOD NEWS Morrey spaces imply regularity 1 If the RHS has a sign they are necessary for regularity. 2 Morrey spaces are necessary and sufficient for regularity Giuseppe Di Fazio (University of Catania) 30 / 100

  2. Lecture 2 N ECESSITY OF V ERY WEAK SOLUTION In general L p ,λ is not contained in W − 1 , 2 1 This means that - in general - weak solutions do not exist 2 Giuseppe Di Fazio (University of Catania) 31 / 100

  3. Lecture 2 V ERY W EAK S OLUTION This force us to introduce the concept of very weak solution Giuseppe Di Fazio (University of Catania) 32 / 100

  4. Lecture 2 V ERY WEAK SOLUTION D EFINITION (V ERY WEAK SOLUTION ) Let Ω be a bounded domain in R n and let µ be a bounded variation measure in Ω . A function u ∈ L 1 (Ω) is a very weak solution of the Dirichlet problem � Lu = µ in Ω u = 0 on ∂ Ω if, for any ϕ ∈ W 1 , 2 (Ω) ∩ C 0 (Ω) such that L ϕ ∈ C 0 (Ω) , we have 0 ˆ ˆ uL ϕ dx = ϕ d µ. Ω Ω Giuseppe Di Fazio (University of Catania) 33 / 100

  5. Lecture 2 V ERY WEAK SOLUTION R EMARK The class of test functions is non empty by De Giorgi regularity Theorem. Indeed, let ψ be a C 0 (Ω) given function. Then, there exists a h¨ older continuous weak solution ϕ of the equation L ϕ = ψ so ϕ ∈ W 1 , 2 (Ω) 0 and then ϕ ∈ C 0 (Ω) ∩ W 1 , 2 (Ω) . 0 Giuseppe Di Fazio (University of Catania) 34 / 100

  6. Lecture 2 V ERY WEAK SOLUTION R EMARK Very weak solution is unique. Indeed, the homogeneous problem � Lu = 0 in Ω u = 0 on ∂ Ω and show that u = 0 . Let ψ ∈ C 0 (Ω) and ϕ in W 1 , 2 (Ω) ∩ C 0 (Ω) such 0 ˆ ˆ that L ϕ = ψ . Since u L ϕ dx = 0 i.e. u ψ dx = 0 for any Ω Ω continuous ψ , we have u = 0 in Ω . Giuseppe Di Fazio (University of Catania) 35 / 100

  7. Lecture 2 G REEN FUNCTION Very important for linear differential operators is the Green function. Giuseppe Di Fazio (University of Catania) 36 / 100

  8. Lecture 2 G REEN FUNCTION Let us consider the problem � Lu = T in Ω u = 0 on ∂ Ω By the definition of very weak solution, there exists a linear application G : W − 1 , 2 (Ω) → W 1 , 2 (Ω) 0 defined by G ( T ) = u This is what we call the Green operator. Giuseppe Di Fazio (University of Catania) 37 / 100

  9. Lecture 2 G REEN FUNCTION Now, by the local boundedness and the local h¨ older continuity Theorems we have G : W − 1 , 2 (Ω) → W 1 , 2 (Ω) 0 such that for any T ∈ W − 1 , 2 (Ω) the function u = G ( T ) is the unique weak solution in W 1 , 2 (Ω) of the Dirichlet problem. 0 Giuseppe Di Fazio (University of Catania) 38 / 100

  10. Lecture 2 G REEN FUNCTION T HEOREM For any bounded variation measure µ on Ω there exists a unique solution of the equation Lu = µ that is zero on the boundary ∂ Ω . Moreover it belongs to W 1 , p ′ (Ω) for any p > n. 0 Giuseppe Di Fazio (University of Catania) 39 / 100

  11. Lecture 2 G REEN FUNCTION The operator G maps continuously W − 1 , p (Ω) in C 0 (Ω) Indeed, if p > n , by De Giorgi - Nash - Moser Theorem we have G : W − 1 , p (Ω) → C 0 (Ω) and there exists c such that ∀ ψ ∈ W − 1 , p (Ω) max Ω | G ( ψ ) | ≤ c � ψ � − 1 , p ¯ Giuseppe Di Fazio (University of Catania) 40 / 100

  12. Lecture 2 G REEN FUNCTION Then, u is a very weak solution of Lu = µ vanishing on ∂ Ω if and only if ˆ ˆ u ψ dx = G ( ψ ) d µ Ω Ω for all ϕ ∈ C 0 (Ω) and � � � � ˆ ˆ ˆ � � � � u ψ dx � = G ( ψ ) d µ � ≤ c | d µ |� ψ � − 1 , p � � � � � � Ω Ω Ω for all ϕ ∈ C 0 (Ω) . Giuseppe Di Fazio (University of Catania) 41 / 100

  13. Lecture 2 G REEN FUNCTION By density we have ˆ � u � W 1 , p ′ ≤ c | d µ | Ω for p > n . The application µ �→ u is the adjoint of G , i.e. u = G ∗ ( µ ) . Giuseppe Di Fazio (University of Catania) 42 / 100

  14. Lecture 2 G REEN FUNCTION Since G : W − 1 , p → C 0 (Ω) is continuous by duality we have that G ∗ is also continuous from the space M of the measures with bounded variation in Ω to W 1 , p ′ (Ω) . For 0 any µ ∈ M we have G ∗ ( µ ) ∈ W 1 , p ′ (Ω) . 0 Giuseppe Di Fazio (University of Catania) 43 / 100

  15. Lecture 2 W EAK AND VERY WEAK Now we are ready to compare the notions of weak and very weak solutions. T HEOREM (L ITTMAN - S TAMPACCHIA - W EINBERGER ) Let Ω ⊂ R n be a bounded domain and µ be a bounded variation measure. Let u ∈ L 1 (Ω) be the very weak solution of the Dirichlet problem � Lu = µ in Ω u = 0 on ∂ Ω . Then u is a weak solution if and only if µ ∈ W − 1 , 2 (Ω) . Giuseppe Di Fazio (University of Catania) 44 / 100

  16. Lecture 2 W EAK AND VERY WEAK P ROOF . Let u be the unique weak solution in W 1 , 2 (Ω) of equation Lu = µ . We 0 have ˆ ˆ a ij u x i φ x j dx = φ d µ Ω Ω for any φ ∈ W 1 , 2 (Ω) and then, 0 � � ˆ � � φ d µ � ≤ ν �∇ u � 2 �∇ φ � 2 � � � Ω for all φ ∈ W 1 , 2 (Ω) , which means that µ ∈ W − 1 , 2 (Ω) . 0 Giuseppe Di Fazio (University of Catania) 45 / 100

  17. Lecture 2 W EAK AND VERY WEAK P ROOF . Now, if µ ∈ W − 1 , 2 (Ω) there exists f such that µ = div f and then the equation Lu = div f has a weak solution by classical Hilbert space approach. Giuseppe Di Fazio (University of Catania) 46 / 100

  18. Lecture 2 G REEN FUNCTION D EFINITION (G REEN FUNCTION ) If y ∈ Ω the Dirac mass at y , δ y is a bounded variation measure. Then we may consider the very weak solution g ( · , y ) of the Dirichlet problem in the case µ ≡ δ y . Such a function will be called the Green function for the operator L with respect to the domain Ω with pole at y . Giuseppe Di Fazio (University of Catania) 47 / 100

  19. Lecture 2 G REEN FUNCTION R EMARK The Green function satisfies ˆ ˆ g ( x , y ) L ϕ ( x ) dx = ϕ ( x ) d δ y ( x ) Ω Ω for all ϕ ∈ C 0 (Ω) ∩ W 1 , 2 (Ω) such that L ϕ ∈ C 0 (Ω) . Then, by definition 0 of δ y , we have ˆ ϕ ( y ) = g ( x , y ) L ϕ ( x ) dx . Ω Giuseppe Di Fazio (University of Catania) 48 / 100

  20. Lecture 2 G REEN FUNCTION Using the Green function we may represent the weak solution of the Dirichlet problem. Indeed, let ψ ∈ C 0 (Ω) and ϕ be the weak solution of � L ϕ = ψ in Ω ϕ = 0 on ∂ Ω . Since C 0 (Ω) ⊂ W − 1 , 2 (Ω) we have ϕ ∈ W 1 , 2 (Ω) and, by De Giorgi 0 Theorem, ϕ ∈ C 0 (Ω) . This implies ˆ ˆ g ( x , y ) ψ ( x ) dx = ϕ ( x ) d δ y ( x ) Ω Ω and then ˆ ϕ ( y ) = g ( x , y ) ψ ( x ) dx . Ω Giuseppe Di Fazio (University of Catania) 49 / 100

  21. Lecture 2 G REEN FUNCTION PROPERTIES T HEOREM (G R ¨ UTER & W IDMAN ) There exists a unique function G : Ω × Ω → R ∪ {∞} such that 1. G ( x , y ) ≥ 0 where it is defined. 2. For any y ∈ Ω and any r > 0 such that B r ( y ) ⊂ Ω the function G ( · , y ) belongs to W 1 , 2 (Ω \ B r ( y )) ∩ W 1 , 1 (Ω) . 0 3. The following relation holds true ˆ a ij ( x ) G x i ( x , y ) ϕ x j ( x ) dx = ϕ ( y ) Ω for all ϕ ∈ C ∞ 0 (Ω) . Giuseppe Di Fazio (University of Catania) 50 / 100

  22. Lecture 2 P ROPERTIES OF G REEN FUNCTION T HEOREM Moreover, if we set G ( x ) ≡ G ( x , y ) , the function G satisfies the following properties 4. G belongs to the space L n / ( n − 2 ) (Ω) with bounds depending on the w ellipticity and dimension only. 5. ∇ G belongs to the space L n / ( n − 1 ) (Ω) with bounds depending on w the ellipticity and dimension only. n 6. G belongs to the space W 1 , s 0 (Ω) for any 1 ≤ s < n − 1 with bounds depending on the ellipticity, dimension and the exponent s only. Giuseppe Di Fazio (University of Catania) 51 / 100

  23. Lecture 2 P ROPERTIES OF G REEN FUNCTION T HEOREM 7. There exists a positive constant c depending on the ellipticity and dimension only such that G ( x , y ) ≤ c | x − y | 2 − n for all x , y ∈ Ω , x � = y. 8. There exists a positive constant c depending on the ellipticity and dimension only such that G ( x , y ) ≥ c | x − y | 2 − n for all x , y ∈ Ω such that 0 < | x − y | ≤ 1 2 d ( y , ∂ Ω) , x � = y. Giuseppe Di Fazio (University of Catania) 52 / 100

  24. Lecture 2 O NLY ONE G REEN FUNCTION T HEOREM The Green function g defined by Stampacchia and the other one G defined by Gr¨ uter & Widman are the same function. Giuseppe Di Fazio (University of Catania) 53 / 100

  25. Lecture 2 R EPRESENTATION FORMULA We can represent the very weak solution of the Dirichlet problem Giuseppe Di Fazio (University of Catania) 54 / 100

  26. Lecture 2 R EPRESENTATION FORMULA T HEOREM (R EPRESENTATION FORMULA ) Let µ be a bounded variation measure in a bounded domain Ω ⊂ R n ( n ≥ 3 ) and let u ∈ L 1 (Ω) be the very weak solution of the Dirichlet problem � Lu = µ in Ω u = 0 on ∂ Ω . Then, the following representation formula holds true ˆ u ( x ) = g ( x , y ) d µ ( y ) Ω where g ( x , y ) is the Green’s function for the operator L with respect to Ω with pole at y ∈ Ω . Giuseppe Di Fazio (University of Catania) 55 / 100

  27. Lecture 2 R EPRESENTATION FORMULA P ROOF . We know existence and uniqueness. The proof by direct substitution. Let ϕ ∈ W 1 , 2 (Ω) ∩ C 0 (Ω) be such that L ϕ ∈ C 0 (Ω) . Then 0 � ˆ � ˆ ˆ ϕ ( y ) d µ ( y ) = g ( x , y ) L ϕ ( x ) dx d µ ( y ) Ω Ω Ω � ˆ � ˆ = g ( x , y ) d µ ( y ) L ϕ ( x ) dx Ω Ω ˆ = u ( x ) L ϕ ( x ) dx Ω ˆ ˆ u ( x ) L ϕ ( x ) dx = ϕ ( x ) d µ ( x ) for any and then Ω Ω ϕ ∈ W 1 , 2 (Ω) ∩ C 0 (Ω) such that L ϕ ∈ C 0 (Ω) that is the result. 0 Giuseppe Di Fazio (University of Catania) 56 / 100

  28. Lecture 2 R EGULARITY Representation formula will give us important information about the REGULARITY of the very weak solution. Giuseppe Di Fazio (University of Catania) 57 / 100

  29. Lecture 3 Lecture 3 - Sufficient conditions for regularity Giuseppe Di Fazio (University of Catania) 58 / 100

  30. Lecture 3 B UN B UN I will not go to your boring class! I’m on holiday! Giuseppe Di Fazio (University of Catania) 59 / 100

  31. Lecture 3 R EGULARITY OF VERY WEAK SOLUTION T HEOREM Let 0 < λ < n − 2 , f ∈ L 1 ,λ (Ω) and let u be the very weak solution of the Dirichlet problem � Lu = f in Ω u = 0 on ∂ Ω Then, u ∈ L p λ ,λ (Ω) where w 1 2 = 1 − n − λ . p λ In particular, u ∈ L p (Ω) for any 1 ≤ p < p λ . Moreover, there exists c ≥ 0 such that � u � L p ≤ c � f � L 1 ,λ where c does not depend on u and f. Giuseppe Di Fazio (University of Catania) 60 / 100

  32. Lecture 3 R EGULARITY OF VERY WEAK SOLUTION The proof easily follows from Chiarenza – Frasca Theorem. Giuseppe Di Fazio (University of Catania) 61 / 100

  33. Lecture 3 C HIARENZA – F RASCA T HEOREM T HEOREM (C HIARENZA – F RASCA ) Let 1 < p < + ∞ and 0 < λ < n. Then, there exists a constant c which depend on n, p and λ such that � Mf � L p ,λ ≤ c � f � L p ,λ . If p = 1 we have the following weak type estimate t | { y ∈ B r ( x ) : Mf ( y ) > t } | ≤ c r λ � f � L 1 ,λ . For 1 ≤ p ≤ + ∞ , 0 < λ < n the function Mf is finite for almost all x ∈ R n . Giuseppe Di Fazio (University of Catania) 62 / 100

  34. Lecture 3 P ROOF OF REGULARITY RESULT P ROOF . By Representation Formula we have ˆ ˆ | x − y | 2 − n | f ( y ) | dy | u ( x ) | ≤ g ( x , y ) | f ( y ) | dy ≤ c Ω Ω a.e. in Ω where g ( x , y ) is the Green’s function of L with respect to Ω with pole at y ∈ Ω and c is a constant which depends on n and ν . Giuseppe Di Fazio (University of Catania) 63 / 100

  35. Lecture 3 P ROOF OF REGULARITY RESULT P ROOF . Since B r ( x ) ⊂ B 2 r ( x ) ⊂ Ω we have ˆ | f ( y ) | ˆ | f ( y ) | | x − y | n − 2 dy = | x − y | n − 2 dy + Ω B 2 r ( x ) | f ( y ) | ˆ + | x − y | n − 2 dy ≡ I + II . Ω \ B 2 r ( x ) Giuseppe Di Fazio (University of Catania) 63 / 100

  36. Lecture 3 P ROOF OF REGULARITY RESULT P ROOF . We separately estimate the two integrals by using Giuseppe Di Fazio (University of Catania) 63 / 100

  37. Lecture 3 P ROOF OF REGULARITY RESULT P ROOF . We have ∞ | f ( y ) | ˆ � I = | x − y | n − 2 dy ≤ B ( x ; r / 2 k − 1 ) \ B ( x ; r / 2 k ) k = 0 � r ∞ � 2 � Mf ( x ) = c r 2 Mf ( x ) ≤ c 2 k k = 0 where Mf ( x ) is the Hardy-Littlewood maximal function of f at x ∈ Ω . Giuseppe Di Fazio (University of Catania) 63 / 100

  38. Lecture 3 P ROOF OF REGULARITY RESULT P ROOF . Now estimate II . We have ∞ | f ( y ) | ˆ � II = | x − y | n − 2 dy ≤ k = 1 r 2 k + 1 ≤| x − y | < r 2 k ∞ � λ − n + 2 � � 2 k r � f � 1 ,λ = c r λ − n + 2 � f � 1 ,λ . ≤ c k = 0 Giuseppe Di Fazio (University of Catania) 63 / 100

  39. Lecture 3 P ROOF OF REGULARITY RESULT P ROOF . Then, for any r > 0, ˆ | f ( y ) | | x − y | n − 2 dy ≤ C n ,λ ψ ( r ) Ω where ψ ( r ) ≡ r 2 Mf ( x ) + r λ − n + 2 � f � 1 ,λ − n + 2 for r > 0. Giuseppe Di Fazio (University of Catania) 63 / 100

  40. Lecture 3 P ROOF OF REGULARITY RESULT P ROOF . By taking the minimum of the right hand side we get | f ( y ) | 2 ˆ | x − y | n − 2 dy ≤ c ( Mf ( x )) 1 / p λ � f � n − λ 1 ,λ Ω Giuseppe Di Fazio (University of Catania) 63 / 100

  41. Lecture 3 P ROOF OF REGULARITY RESULT P ROOF . so that ˆ | f ( y ) | 2 1 ,λ ( Mf ( x )) 1 / p λ n − λ | u ( x ) | ≤ c | x − y | n − 2 dy ≤ c � f � Ω a.e. in Ω and the result follows by Chiarenza - Frasca Theorem. Giuseppe Di Fazio (University of Catania) 63 / 100

  42. Lecture 3 A COUNTEREXAMPLE If λ → n − 2 then p λ → ∞ . Unfortunately the implication f ∈ L 1 , n − 2 (Ω) ⇒ u ∈ L ∞ (Ω) is not true! Let Ω = { x ∈ R n : 0 < | x | < 1 } , n ≥ 3. Let us check that the very weak solution of the Dirichlet problem ∆ u = n − 2  in Ω  | x | 2 u = 0 on ∂ Ω  is the function u ( x ) = log | x | . Giuseppe Di Fazio (University of Catania) 64 / 100

  43. Lecture 3 V ERY WEAK SOLUTION IN BMO T HEOREM If f ∈ L 1 , n − 2 (Ω) the very weak solution u belongs to BMO locally in the following sense. Let Ω ′ ⋐ Ω and d = dist (Ω ′ , ∂ Ω) . Then, there exists a constant C ≡ C ( n , ν, d ) > 0 such that � dy ≤ C � f � 1 , n − 2 . � � � u ( y ) − u B r ( x ) B r ( x ) for all 0 < r < d 2 and x ∈ Ω ′ . Giuseppe Di Fazio (University of Catania) 65 / 100

  44. Lecture 3 V ERY WEAK SOLUTION = WEAK SOLUTION T HEOREM ˜ S (Ω) ⊂ W − 1 , 2 (Ω) P ROOF . Let f ∈ ˜ S (Ω) and ϕ ∈ C ∞ 0 (Ω) . We have to show that there exists a positive constant C such that |� f , ϕ �| ≤ C φ ( f ) �∇ ϕ � 2 | f ( x ) | Set I 1 ( f )( y ) = ´ | x − y | n − 1 dx . Then Ω � ˆ |∇ ϕ ( y ) | � ˆ |� f , ϕ �| ≤ C | f ( x ) | | x − y | n − 1 dy dx Ω Ω ˆ = C |∇ ϕ ( y ) | I 1 ( f )( y ) dy Ω Giuseppe Di Fazio (University of Catania) 66 / 100 ≤ C �∇ ϕ � L 2 � I 1 ( f ) � L 2 .

  45. Lecture 3 V ERY WEAK SOLUTION = WEAK SOLUTION T HEOREM ˜ S (Ω) ⊂ W − 1 , 2 (Ω) P ROOF . But � ˆ | f ( x ) | � � ˆ | f ( z ) | � ˆ � I 1 ( f ) � 2 = | x − y | n − 1 dx | z − y | n − 1 dz dy Ω Ω Ω � ˆ � ˆ � � ˆ dy = | f ( z ) | | f ( x ) | dx dz . | x − y | n − 1 | z − y | n − 1 Ω Ω Ω Giuseppe Di Fazio (University of Catania) 66 / 100

  46. Lecture 3 V ERY WEAK SOLUTION = WEAK SOLUTION T HEOREM ˜ S (Ω) ⊂ W − 1 , 2 (Ω) P ROOF . By well known properties of Riesz potentials we get | f ( x ) | ˆ ˆ � I 1 ( f ) � 2 L 2 (Ω) ≤ C | f ( z ) | | x − z | n − 2 dx dz . Ω Ω Since f ∈ ˜ S (Ω) , we have ˆ � I 1 ( f ) � 2 L 2 (Ω) ≤ C | f ( x ) | dx < ∞ Ω Thus, the conclusion follows putting together the previous inequalities. Giuseppe Di Fazio (University of Catania) 66 / 100

  47. Lecture 3 V ERY WEAK SOLUTION = B OUNDED WEAK SOLUTION T HEOREM If f ∈ ˜ S (Ω) then the ( weak ) solution u is bounded in Ω . P ROOF . For any x ∈ Ω we have ˆ ˆ | f ( y ) || x − y | 2 − n dy | u ( x ) | ≤ g ( x , y ) | f ( y ) | dy ≤ c Ω Ω ˆ | f ( y ) || x − y | 2 − n dy ≤ c sup r > 0 Ω ∩ B r ( x ) ˆ | f ( y ) || x − y | 2 − n dy . ≤ c sup r > 0 x ∈ Ω Ω ∩ B r ( x ) Giuseppe Di Fazio (University of Catania) 67 / 100

  48. Lecture 3 W EAK SOLUTION IS CONTINUOUS T HEOREM (C HIARENZA – F ABES – G AROFALO ) If f ∈ S (Ω) , then any weak solution u of equation Lu = f is continuous in Ω . Giuseppe Di Fazio (University of Catania) 68 / 100

  49. Lecture 3 U SEFUL INEQUALIES T HEOREM (C ACCIOPPOLI ) Let u be a weak solution of equation Lu = 0 . Then there exists a constant c = c ( n , ν ) such that ˆ ˆ |∇ u | 2 ϕ 2 dx ≤ u 2 |∇ ϕ | 2 dx ∀ ϕ ∈ D (Ω) . Ω Ω T HEOREM (H ARNACK ) Let u be a non negative weak solution of equation Lu = 0 . Then there exists a constant c = c ( n , ν ) such that, for any ball B such that 2 B ⋐ Ω we have sup u ≤ c inf B u B Giuseppe Di Fazio (University of Catania) 69 / 100

  50. Lecture 3 P ROOF . Let η be the Stummel modulus of f . By the embedding the solution is weak and bounded. We have ˆ ˆ A ( x ) ∇ u ∇ ψ dx = f ( x ) ψ ( x ) dx Ω Ω for all ψ ∈ C ∞ 0 (Ω) . If B r is a ball such that B 4 r ⋐ Ω let φ be a cut-off function C ∞ 0 (Ω) such that 0 ≤ φ ≤ 1 in Ω , φ ≡ 1 in B 3 r / 2 , φ ≡ 0 out of B 2 r . Giuseppe Di Fazio (University of Catania) 70 / 100

  51. Lecture 3 P ROOF . Then u φ is a weak solutions of L ( u φ ) = f φ − div ( A ( x ) u ∇ φ ) − A ( x ) ∇ u ∇ φ . Giuseppe Di Fazio (University of Catania) 70 / 100

  52. Lecture 3 P ROOF . By representation formula we get ˆ u ( x ) φ ( x ) = f ( y ) φ ( y ) g ( x , y ) dy + Ω ˆ + ∇ y g ( x , y ) A ( y ) u ( y ) ∇ φ ( y ) dy Ω ˆ − ∇ u ( y ) A ( y ) ∇ φ ( y ) g ( x , y ) dy . Ω Giuseppe Di Fazio (University of Catania) 70 / 100

  53. Lecture 3 P ROOF . For any x ∈ B r / 2 ( x 0 ) ˆ u ( x ) − u ( x 0 ) = f ( y ) φ ( y ) ( g ( x , y ) − g ( x 0 , y )) dy Ω ˆ − A ( y ) ∇ u ∇ φ ( g ( x , y ) − g ( x 0 , y )) dy Ω ˆ � � + ∇ g y ( x , y ) − ∇ g y ( x 0 , y ) A ( y ) u ( y ) ∇ φ dy Ω ≡ I + II + III Giuseppe Di Fazio (University of Catania) 70 / 100

  54. Lecture 3 P ROOF . First estimate I . Let N > 1 to be chosen later. ˆ | I | ≤ | f ( y ) φ ( y ) ( g ( x , y ) − g ( x 0 , y )) | dy { y ∈ Ω: | x 0 − y | > N | x − x 0 |} ˆ + | f ( y ) φ ( y ) ( g ( x , y ) − g ( x 0 , y )) | dy { y ∈ Ω: | x 0 − y |≤ N | x − x 0 |} ≡ A + B . To estimate A we use the fact that the Green’s function g ( · , y ) is α -H¨ older continuous out of the pole because of the De Giorgi Theorem Giuseppe Di Fazio (University of Catania) 70 / 100

  55. Lecture 3 P ROOF . Namely, the following inequality holds true | g ( x , y ) − g ( x 0 , y ) | � 1 � α � � | x 0 − x | 2 | g ( x , y ) | 2 dx ≤ C r B r ≤ CN − α max x ∈ B r g ( x , y ) ≤ CN − α min x ∈ B r g ( x , y ) ≤ CN − α g ( x 0 , y ) ≤ CN − α | x 0 − y | 2 − n Giuseppe Di Fazio (University of Catania) 70 / 100

  56. Lecture 3 P ROOF . and then ˆ A ≤ CN − α | f ( y ) | φ ( y ) | x 0 − y | 2 − n dy ≤ CN − α η ( 2 r ) . B 2 r ( x 0 ) Giuseppe Di Fazio (University of Catania) 70 / 100

  57. Lecture 3 P ROOF . Now estimate B by using Gr¨ uter & Widman Theorem. � � 1 1 | g ( x , y ) − g ( x 0 , y ) | ≤ C | x − y | n − 2 + | x 0 − y | n − 2 Giuseppe Di Fazio (University of Catania) 70 / 100

  58. Lecture 3 P ROOF . Then, due to the domain of integration, | f ( y ) | | f ( y ) | ˆ ˆ B ≤ C | x − y | n − 2 dy + | x 0 − y | n − 2 dy | x 0 − y |≤ N | x − x 0 | | x 0 − y |≤ N | x − x 0 | | f ( y ) | ˆ ≤ C | x − y | n − 2 dy + η ( N | x − x 0 | ) ≤ | x − y |≤ ( N + 1 ) | x − x 0 | ≤ C η (( N + 1 ) | x 0 − x | ) + η ( N | x − x 0 | ) Giuseppe Di Fazio (University of Catania) 70 / 100

  59. Lecture 3 P ROOF . � 1 � r 2 By choosing now N = we get | x − x 0 | � α/ 2 � | x − x 0 | | I | ≤ η ( 2 r )+ r � � + η ( r | x − x 0 | ) + η ( r | x − x 0 | + | x − x 0 | ) . Giuseppe Di Fazio (University of Catania) 70 / 100

  60. Lecture 3 P ROOF . Now we estimate II and III . ˆ II = ( g ( x , y ) − g ( x 0 , y )) A ( y ) ∇ u ∇ ϕ dy B 2 r \ B 3 r / 2 By De Giorgi Theorem there exists α ≡ α ( n , ν ) > 0 such that � α � | x − x 0 | 1 | g ( x , y ) − g ( x 0 , y ) | ≤ c | x 0 − y | n − 2 r if y ∈ B 2 r \ B 3 r / 2 , so that Giuseppe Di Fazio (University of Catania) 70 / 100

  61. Lecture 3 P ROOF . � α ˆ � | x − x 0 | | II | ≤ c |∇ u | | x 0 − y | n − 2 dy r r B 2 r \ B 3 r / 2 � α ˆ � | x − x 0 | ≤ cr 1 − n |∇ u | dy r B 2 r and then � 1 � α � | x − x 0 | � 2 |∇ u | 2 dy | II | ≤ c ( n , ν ) r . r B 2 r Giuseppe Di Fazio (University of Catania) 70 / 100

  62. Lecture 3 P ROOF . Then, by Caccioppoli inequality � 1 � α � � | x − x 0 | 2 | u | 2 dy | II | ≤ c ( n , ν ) . r B 4 r Giuseppe Di Fazio (University of Catania) 70 / 100

  63. Lecture 3 P ROOF . Finally we estimate III . ˆ � � III = ∇ g y ( x , y ) − ∇ g y ( x 0 , y ) A ( y ) ∇ ϕ u ( y ) dy B 2 r \ B 3 r / 2 Giuseppe Di Fazio (University of Catania) 70 / 100

  64. Lecture 3 P ROOF . By Cauchy Schwarz inequality and Caccioppoli inequality we have | III | ≤ c ˆ |∇ g y ( x , y ) − ∇ g y ( x 0 , y ) || u | dy r B 2 r \ B 3 r / 2 � 1 � 1 � ˆ 2 � ˆ ≤ c 2 | u | 2 dy |∇ g y ( x , y ) − ∇ g y ( x 0 , y ) | 2 dy r B 2 r B 2 r \ B 3 r / 2 � 1 � 1 � 2 = c � ˆ ˆ 2 | u | 2 dy | g ( x , y ) − g ( x 0 , y ) | 2 dy r 2 4 r < | x 0 − y | < 9 3 B 2 r 4 r Giuseppe Di Fazio (University of Catania) 70 / 100

  65. Lecture 3 P ROOF . De Giorgi Theorem and pointwise estimates of Green function yield � 1 � α � � | x − x 0 | 2 | u | 2 dy | III | ≤ c r B 2 r Giuseppe Di Fazio (University of Catania) 70 / 100

  66. Lecture 3 P ROOF . Merging previous estimates we get � � α/ 2 � | x − x 0 | � | u ( x ) − u ( x 0 ) | ≤ c η ( 2 r ) + η ( r | x − x 0 | ) r � + η ( r | x − x 0 | + | x − x 0 | ) � 1 � α � � � | x − x 0 | 2 | u | 2 dy + → 0 r B 2 r as x → x 0 because f ∈ S (Ω) . Giuseppe Di Fazio (University of Catania) 70 / 100

  67. Lecture 3 W EAK SOLUTION IS H ¨ OLDER CONTINUOUS T HEOREM If f ∈ L 1 ,λ (Ω) , n − 2 < λ < n, then any weak solution u of Lu = f belong to C 0 ,α (Ω) where α ≡ α ( n , λ, ν, � f � 1 ,λ ) . Giuseppe Di Fazio (University of Catania) 71 / 100

  68. Lecture 3 P ROOF . It is a refinement of the previous result because L 1 ,λ is contained in S . In order to show the result we use the fact that the function f belongs to the Morrey space L 1 ,λ with n − 2 < λ < n that implies the following estimate η ( r ) ≤ c � f � 1 ,λ r λ − n + 2 . Giuseppe Di Fazio (University of Catania) 72 / 100

  69. Lecture 3 P ROOF . By using the estimate we finally get �� | x − x 0 | � α/ 2 r λ − n + 2 + | u ( x ) − u ( x 0 ) | ≤ c � f � 1 ,λ r � λ − n + 2 � �� + r | x − x 0 | + | x − x 0 | � 1 � α � � | x − x 0 | 2 | u | 2 dy + c r B 2 r Giuseppe Di Fazio (University of Catania) 72 / 100

  70. Lecture 3 P ROOF . and then | u ( x ) − u ( x 0 ) | ≤ c | x − x 0 | β where β = 1 2 min ( λ − n + 2 , α ) where α is the H¨ older exponent of the elliptic operator L arising from De Giorgi Theorem. Giuseppe Di Fazio (University of Catania) 72 / 100

  71. Lecture 4 N ECESSARY CONDITIONS FOR REGULARITY Lecture 4 - Necessary conditions for regularity Giuseppe Di Fazio (University of Catania) 73 / 100

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend