least and greatest solutions of equations over sets of
play

Least and greatest solutions of equations over sets of integers - PowerPoint PPT Presentation

Least and greatest solutions of equations over sets of integers Artur Je z Alexander Okhotin Wroc law, Poland Turku, Finland 23 August 2010 A. D. Artur Je z, Alexander Okhotin Equations over sets of integers MFCS 2010 (Brno) 1 /


  1. Least and greatest solutions of equations over sets of integers Artur Je˙ z Alexander Okhotin Wroc� law, Poland Turku, Finland 23 August 2010 A. D. Artur Je˙ z, Alexander Okhotin Equations over sets of integers MFCS 2010 (Brno) 1 / 15

  2. Resolved systems of language equations  X 1 = ϕ 1 ( X 1 , . . . , X n )   . . .   X n = ϕ n ( X 1 , . . . , X n ) X i : subset of Ω ∗ . ϕ i : variables, constants, operations on languages. Artur Je˙ z, Alexander Okhotin Equations over sets of integers MFCS 2010 (Brno) 2 / 15

  3. Resolved systems of language equations  X 1 = ϕ 1 ( X 1 , . . . , X n )   . . .   X n = ϕ n ( X 1 , . . . , X n ) X i : subset of Ω ∗ . ϕ i : variables, constants, operations on languages. studied by Ginsburg and Rice ( ∪ , · ), semantics of CFG extended by Okhotin to ( ∩ , ∪ and · ), defines conjunctive grammars Artur Je˙ z, Alexander Okhotin Equations over sets of integers MFCS 2010 (Brno) 2 / 15

  4. Resolved systems of language equations  X 1 = ϕ 1 ( X 1 , . . . , X n )   . . .   X n = ϕ n ( X 1 , . . . , X n ) X i : subset of Ω ∗ . ϕ i : variables, constants, operations on languages. studied by Ginsburg and Rice ( ∪ , · ), semantics of CFG extended by Okhotin to ( ∩ , ∪ and · ), defines conjunctive grammars interested in ( S 1 , . . . , S n ) which are ◮ least: S i ⊆ S ′ i for every other solution ( S ′ 1 , . . . , S ′ n ) ◮ greatest: S i ⊇ S ′ i for every other solution ( S ′ 1 , . . . , S ′ n ) guaranteed to exist (Tarski’s fixpoint theorem). Artur Je˙ z, Alexander Okhotin Equations over sets of integers MFCS 2010 (Brno) 2 / 15

  5. Example Example X = XX ∪ { a } X { b } ∪ { ǫ } Artur Je˙ z, Alexander Okhotin Equations over sets of integers MFCS 2010 (Brno) 3 / 15

  6. Example Example X = XX ∪ { a } X { b } ∪ { ǫ } Least solution: the Dyck language. Greatest solution: { a , b } ∗ . Artur Je˙ z, Alexander Okhotin Equations over sets of integers MFCS 2010 (Brno) 3 / 15

  7. Language equations—results Language equations over Ω, with | Ω | � 2. Artur Je˙ z, Alexander Okhotin Equations over sets of integers MFCS 2010 (Brno) 4 / 15

  8. Language equations—results Language equations over Ω, with | Ω | � 2. Theorem (Okhotin, ICALP 2003) L ⊆ Ω ∗ is given by unique (least, greatest) solution of a system with {∪ , ∩ , ∼ , ·} and equations of the form ϕ ( X 1 , . . . , X n ) = ψ ( X 1 , . . . , X n ) if and only if L is recursive (r.e., co-r.e.) Artur Je˙ z, Alexander Okhotin Equations over sets of integers MFCS 2010 (Brno) 4 / 15

  9. Language equations—results Language equations over Ω, with | Ω | � 2. Theorem (Okhotin, ICALP 2003) L ⊆ Ω ∗ is given by unique (least, greatest) solution of a system with {∪ , ∩ , ∼ , ·} and equations of the form ϕ ( X 1 , . . . , X n ) = ψ ( X 1 , . . . , X n ) if and only if L is recursive (r.e., co-r.e.) Theorem (Kunc, STACS 2005) There exists a finite L such that the greatest solution of LX = XL for X ⊆ { a , b } ∗ is co-r.e.-hard. Artur Je˙ z, Alexander Okhotin Equations over sets of integers MFCS 2010 (Brno) 4 / 15

  10. Simple case and equations over sets of numbers simple case: Ω = { a } . Artur Je˙ z, Alexander Okhotin Equations over sets of integers MFCS 2010 (Brno) 5 / 15

  11. Simple case and equations over sets of numbers simple case: Ω = { a } . {∪ , ·} : regular Artur Je˙ z, Alexander Okhotin Equations over sets of integers MFCS 2010 (Brno) 5 / 15

  12. Simple case and equations over sets of numbers simple case: Ω = { a } . {∪ , ·} : regular {· , c } : non-regular [Leiss 1994] Artur Je˙ z, Alexander Okhotin Equations over sets of integers MFCS 2010 (Brno) 5 / 15

  13. Simple case and equations over sets of numbers simple case: Ω = { a } . {∪ , ·} : regular {· , c } : non-regular [Leiss 1994] {∪ , ∩ , ·} : ? Artur Je˙ z, Alexander Okhotin Equations over sets of integers MFCS 2010 (Brno) 5 / 15

  14. Simple case and equations over sets of numbers simple case: Ω = { a } . {∪ , ·} : regular {· , c } : non-regular [Leiss 1994] {∪ , ∩ , ·} : ? only length matters: a n ← → number n Artur Je˙ z, Alexander Okhotin Equations over sets of integers MFCS 2010 (Brno) 5 / 15

  15. Simple case and equations over sets of numbers simple case: N {∪ , ·} : periodic {· , c } : non-periodic [Leiss 1994] {∪ , ∩ , ·} : ?  X 1 = ϕ 1 ( X 1 , . . . , X n )   . . .   X n = ϕ n ( X 1 , . . . , X n ) X i : subset of N 0 = { 0 , 1 , 2 , . . . } . ϕ i : variables, singleton constants, operations on sets X + Y = { x + y | x ∈ X , y ∈ Y } Artur Je˙ z, Alexander Okhotin Equations over sets of integers MFCS 2010 (Brno) 5 / 15

  16. Using positional notation Numbers in base- k notation: strings over Ω k = { 0 , 1 , . . . , k − 1 } . Artur Je˙ z, Alexander Okhotin Equations over sets of integers MFCS 2010 (Brno) 6 / 15

  17. Using positional notation Numbers in base- k notation: strings over Ω k = { 0 , 1 , . . . , k − 1 } . ( a ℓ . . . a 0 ) k : number denoted by a ℓ . . . a 0 in base- k notation Artur Je˙ z, Alexander Okhotin Equations over sets of integers MFCS 2010 (Brno) 6 / 15

  18. Using positional notation Numbers in base- k notation: strings over Ω k = { 0 , 1 , . . . , k − 1 } . ( a ℓ . . . a 0 ) k : number denoted by a ℓ . . . a 0 in base- k notation Set of numbers ↔ formal language over Ω k Artur Je˙ z, Alexander Okhotin Equations over sets of integers MFCS 2010 (Brno) 6 / 15

  19. Using positional notation Numbers in base- k notation: strings over Ω k = { 0 , 1 , . . . , k − 1 } . ( a ℓ . . . a 0 ) k : number denoted by a ℓ . . . a 0 in base- k notation Set of numbers ↔ formal language over Ω k Example (Je˙ z, DLT 2007) X 1 = ( X 2 + X 2 ∩ X 1 + X 3 ) ∪ { 1 } X 2 = ( X 12 + X 2 ∩ X 1 + X 1 ) ∪ { 2 } X 3 = ( X 12 + X 12 ∩ X 1 + X 2 ) ∪ { 3 } X 12 = X 3 + X 3 ∩ X 1 + X 2 Artur Je˙ z, Alexander Okhotin Equations over sets of integers MFCS 2010 (Brno) 6 / 15

  20. Using positional notation Numbers in base- k notation: strings over Ω k = { 0 , 1 , . . . , k − 1 } . ( a ℓ . . . a 0 ) k : number denoted by a ℓ . . . a 0 in base- k notation Set of numbers ↔ formal language over Ω k Example (Je˙ z, DLT 2007) X 1 = ( X 2 + X 2 ∩ X 1 + X 3 ) ∪ { 1 } X 2 = ( X 12 + X 2 ∩ X 1 + X 1 ) ∪ { 2 } ( ( 10 ∗ ) 4 , ( 20 ∗ ) 4 , ( 30 ∗ ) 4 , ( 120 ∗ ) 4 ) X 3 = ( X 12 + X 12 ∩ X 1 + X 2 ) ∪ { 3 } X 12 = X 3 + X 3 ∩ X 1 + X 2 Artur Je˙ z, Alexander Okhotin Equations over sets of integers MFCS 2010 (Brno) 6 / 15

  21. Using positional notation Numbers in base- k notation: strings over Ω k = { 0 , 1 , . . . , k − 1 } . ( a ℓ . . . a 0 ) k : number denoted by a ℓ . . . a 0 in base- k notation Set of numbers ↔ formal language over Ω k Example (Je˙ z, DLT 2007) X 1 = ( X 2 + X 2 ∩ X 1 + X 3 ) ∪ { 1 } X 2 = ( X 12 + X 2 ∩ X 1 + X 1 ) ∪ { 2 } ( ( 10 ∗ ) 4 , ( 20 ∗ ) 4 , ( 30 ∗ ) 4 , ( 120 ∗ ) 4 ) X 3 = ( X 12 + X 12 ∩ X 1 + X 2 ) ∪ { 3 } X 12 = X 3 + X 3 ∩ X 1 + X 2 X 2 + X 2 = ( 20 ∗ ) 4 + ( 20 ∗ ) 4 = Artur Je˙ z, Alexander Okhotin Equations over sets of integers MFCS 2010 (Brno) 6 / 15

  22. Using positional notation Numbers in base- k notation: strings over Ω k = { 0 , 1 , . . . , k − 1 } . ( a ℓ . . . a 0 ) k : number denoted by a ℓ . . . a 0 in base- k notation Set of numbers ↔ formal language over Ω k Example (Je˙ z, DLT 2007) X 1 = ( X 2 + X 2 ∩ X 1 + X 3 ) ∪ { 1 } X 2 = ( X 12 + X 2 ∩ X 1 + X 1 ) ∪ { 2 } ( ( 10 ∗ ) 4 , ( 20 ∗ ) 4 , ( 30 ∗ ) 4 , ( 120 ∗ ) 4 ) X 3 = ( X 12 + X 12 ∩ X 1 + X 2 ) ∪ { 3 } X 12 = X 3 + X 3 ∩ X 1 + X 2 X 2 + X 2 = ( 20 ∗ ) 4 + ( 20 ∗ ) 4 = ( 10 + ) 4 ∪ Artur Je˙ z, Alexander Okhotin Equations over sets of integers MFCS 2010 (Brno) 6 / 15

  23. Using positional notation Numbers in base- k notation: strings over Ω k = { 0 , 1 , . . . , k − 1 } . ( a ℓ . . . a 0 ) k : number denoted by a ℓ . . . a 0 in base- k notation Set of numbers ↔ formal language over Ω k Example (Je˙ z, DLT 2007) X 1 = ( X 2 + X 2 ∩ X 1 + X 3 ) ∪ { 1 } X 2 = ( X 12 + X 2 ∩ X 1 + X 1 ) ∪ { 2 } ( ( 10 ∗ ) 4 , ( 20 ∗ ) 4 , ( 30 ∗ ) 4 , ( 120 ∗ ) 4 ) X 3 = ( X 12 + X 12 ∩ X 1 + X 2 ) ∪ { 3 } X 12 = X 3 + X 3 ∩ X 1 + X 2 X 2 + X 2 = ( 20 ∗ ) 4 + ( 20 ∗ ) 4 = ( 10 + ) 4 ∪ ( 20 ∗ 20 ∗ ) 4 Artur Je˙ z, Alexander Okhotin Equations over sets of integers MFCS 2010 (Brno) 6 / 15

  24. Using positional notation Numbers in base- k notation: strings over Ω k = { 0 , 1 , . . . , k − 1 } . ( a ℓ . . . a 0 ) k : number denoted by a ℓ . . . a 0 in base- k notation Set of numbers ↔ formal language over Ω k Example (Je˙ z, DLT 2007) X 1 = ( X 2 + X 2 ∩ X 1 + X 3 ) ∪ { 1 } X 2 = ( X 12 + X 2 ∩ X 1 + X 1 ) ∪ { 2 } ( ( 10 ∗ ) 4 , ( 20 ∗ ) 4 , ( 30 ∗ ) 4 , ( 120 ∗ ) 4 ) X 3 = ( X 12 + X 12 ∩ X 1 + X 2 ) ∪ { 3 } X 12 = X 3 + X 3 ∩ X 1 + X 2 X 2 + X 2 = ( 20 ∗ ) 4 + ( 20 ∗ ) 4 = ( 10 + ) 4 ∪ ( 20 ∗ 20 ∗ ) 4 X 1 + X 3 = ( 10 ∗ ) 4 + ( 30 ∗ ) 4 = Artur Je˙ z, Alexander Okhotin Equations over sets of integers MFCS 2010 (Brno) 6 / 15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend