learning to love disorder
play

Learning to Love Disorder: Spin-charge Conversion and Other - PowerPoint PPT Presentation

Learning to Love Disorder: Spin-charge Conversion and Other Interesting Effects in 2D Spin-Orbit Coupled Systems Miguel A. Cazalilla National Tsing Hua University & National Center for Theoretical Sciences, Taiwan & Donostia


  1. Learning to Love Disorder: Spin-charge Conversion and Other Interesting Effects in 2D Spin-Orbit Coupled Systems Miguel A. Cazalilla National Tsing Hua University & National Center for Theoretical Sciences, Taiwan & Donostia International Physics Center (DIPC) , Spain “Novel Quantum States in CMT NQS2017” 京都大学基礎物理学研究所 ( 2017年11月2日 )

  2. Acknowledgements ChunLi Huang Xianpeng Zhang Junhui Zheng (&Ms. Zheng) Hung-Yu Yang Taiwan NTHU → DIPC (Spain) Taiwan → Frankfurt NTHU → Boston College Mirco Milletari Singapore Hector Ochoa Aires Ferreira Giovanni Vignale Yidong Chong (UCLA) U of Missouri (US) Univ of York (UK) NTU (Singapore)

  3. 近藤さん On the importance of disorder

  4. Disorder can be useful… John Bardeen Quantum Hall Plateaux

  5. Outline: Part I Extrinsic Spin Hall Effect and Mott Scattering Indirect Magneto-electric Coupling: Edelstein Effect Direct Magneto-electric Coupling: Anisotropic Spin Precession What about experiments? Non local probes, Hanle, and all that

  6. Outline: Part II Topology = Dimensional reduction? Impurity in a 1D Channel w and w/o interactions: Kane & Fisher Magnetic Impurity near the non-interacting edge of a 2D QSHI Magnetic Impurity near the interacting edge of a 2D QSHI

  7. Outline: Part I Extrinsic Spin Hall Effect and Mott Scattering Indirect Magneto-electric Coupling: Edelstein Effect Direct Magneto-electric Coupling: Anisotropic Spin Precession What about experiments? Non local probes, Hanle, and all that

  8. SHE and Symmetry (2D) 2D rotations J z = L z + S z [ H, J z ] = 0 [U(1) group] Rank-2 Tensor? J = ( J x , J y ) � � J α = J α x , J α y Charge current J α → J z ⊕ ( J x , J y ) (2D vector) (2D vector) Under reflection x ➝ -x and y ➝ y and S z ➝ -S z J z y → J z J y → − J z J x → − J x J y → J y vs . x y Different sign determined by TRS (by Onsager’s reciprocity) J z J x = − θ SHE J z y = θ SHE J x y Symmetry arguments are fine, but what are the mechanisms?

  9. Motivation: Functionalized Graphene Chemisorption: H, F, … Physisorption: Cu, Ag, Au, Th, In,… C Weeks et al Phys Rev X (2012) AH Castro Neto & F Guinea Phys Rev Lett (2009) (a) (c) (a) (b) Graphene h-BN σ(mS) Substrates: TMD V SiO 2 V Si SiO ₂/p-Si WS₂ (kΩ) Z Wang et al Phys. Rev. (2016) (b) Gr aph ene under WS 2 B Wang et al 2D Mater (2016) R Pris tj ne Gr aph ene TMD = WSe 2 , MoS 2 10 WS 2 (V) Ω Ω Ω σ σ σ Ω Ω σ

  10. Extrinsic Mechanisms for SHE Quantum Side Jump Skew Scattering (n imp ⪡ 1) δ elastic channel elastic channel up up − δ down down n imp < 1% 1 σ sH ∼ const σ sH ∼ N imp Nagaosa, Sinova, Onoda, MacDonald, Ong, Rev. Mod. Phys. (2010)

  11. Extrinsic SHE: Mott’s Scattering k Electron-atom scattering θ p 2 x 2 Scattering matrix (to all orders…) T kp = A kp 1 + B kp · s SOC h i cos θ = ˆ B kp = S ( θ ) ( k × p ) k · ˆ p (3D Rotational Sym.) ρ in ( p ) = 1 kp = 1 ρ out ( k ) = T kp ρ in ( p ) T † 2 T kp T † 2 1 kp Unpolarized! ⇥ ⇤ h S z i out = Tr [ s z ρ out ( k )] = Re / sin θ A ∗ kp B z kp Polarization!

  12. Forces from collisions θ “Orbital” pseudo magnetic field from collisions kp = S ( θ ) ( k × p ) · ˆ z ∝ sin θ B z Lorentz-like force Z h � ∗ i � d θ sin θ Re ( J = J x ˆ x ) F s ∝ n imp ˆ y s z A kp B z kp Forces “emerge” from collisions (akin to the Bernoulli principle)

  13. Graphene: Resonant Enhancement Graphene is very prone Graphene to resonant scattering γ = spin Hall angle (T = 0) Linear Density of States ⇢ ( ✏ ) ∼ | ✏ | A Ferreira, T Rappoport, MAC, Yang et al. Science (2013) AH Castro Neto Phys Rev Lett (2014)

  14. SHE in CVD Graphene Spin Hall Angle Electric Conductivity J Balakrishnan et al Nat. Comm. (2014) Model: Kane-Mele SOC impurities plus scalar resonant scatterers

  15. Outline: Part I Extrinsic Spin Hall Effect and Mott Scattering Indirect Magneto-electric Coupling: Edelstein Effect Direct Magneto-electric Coupling: Anisotropic Spin Precession What about experiments? Non local probes, Hanle, and all that

  16. 2D Magnetoelectric Effect & Symmetry provided INVERSION SYMMETRY IS BROKEN J M must be related to M = ( M x , M y , M z ) = M z ⊕ M k =( M x , M y ) (pseudo-vector under 3D rotation) J = ( J x , J y ) Charge current (2D vector) Under reflection x ➝ -x and y ➝ y and S z ➝ -S z M y = α CISP J x α CISP M y J x = ˜

  17. CISP from Edelstein Effect k y M y 6 = 0 E k x H R = B R ( k ) · s B R ( k ) = α R ( ˆ z × k )

  18. Indirect DMC: Eldestein Effect Two-step process J SHE y − δ S y z : δ S y ¼ − 2 m α J z (a) τ EY k y δ S z y x J z M y k k x z (b) Rashba SOC y δ S z x H R = B R ( k ) · s K Shen, G Vignale & R Raimondi PRL (2014) B R ( k ) = α R ( ˆ z × k ) R Raimondi, P Schwab, C Gorinni, and G Vignale Ann Phys (Berlin) 2012

  19. Outline: Part I Extrinsic Spin Hall Effect and Mott Scattering Indirect Magneto-electric Coupling: Edelstein Effect Direct Magneto-electric Coupling: Anisotropic Spin Precession What about experiments? Non local probes, Hanle, and all that

  20. Revisiting Mott: Anisotropic Spin Precession Understanding disorder from one impurity k T kp = A kp 1 + B kp · s p Unpolarized ρ in ( p ) = 1 kp = 1 ρ out ( k ) = T kp ρ in ( p ) T † 2 T kp T † 2 1 kp Mott’s scattering ⇥ ⇤ � � ASP h S i = Tr [ s ρ out ( p )] = Re + i B ∗ kp ⇥ B kp A ∗ kp B kp Isotropic TR-invariant B kp = S ( θ ) ( k × p ) ∝ B ∗ kp ⇒ ASP = 0 No ASP scattering!

  21. ASP in 2D Materials C Huang, Y Chong, and MAC, Phys Rev B (2016) T kp = A kp 1 + B kp · s k ˆ z p 3D Rotational Invariance broken to 2D rotation B kp = B k z B z kp + ˆ kp “Zeeman-like” Orbital-like (Rashba disorder fluctuations) 2D Mott’s scattering MM Glazov, E Ya Sherman, VK Dugaev Physica E (2010) kp = S ( θ ) ( k × p ) · ˆ B z z JP Binder et al Nature Physics (2016)

  22. Anisotropic Precession Scattering (ASP) C Huang, Y Chong, and MAC, Phys Rev B (2016) in-plane Scattering θ B k angle kp out of plane B z kp ∝ sin θ � ⇤ ⇥ ˆ / iB k B kp ⇥ B ⇤ � � � z / h S y i out ASP rate = i B z kp kp kp Electron current → spin polarization perp. to E (i . e . M y )

  23. Kohn & Luttinger: Strong disorder C Huang, Y Chong, and MAC, Phys Rev B (2016) δ n k = n k − n 0 k Spin δ n k = ρ k 1 + m k · s Charge Yidong Chong C-L Huang @ t ⇢ k + e E · r k n 0 k = I 1 [ ⇢ k , m k ] , ~ ~ ⇣ ⌘ ⇣ � ~ H � n imp ⌘ @ t m k + Re B kk ⇥ m k = I 2 [ ⇢ k , m k ] . ~ Collision integral k k Impurity (Rashba) I 1 , I 2 ∝ n imp self-energy

  24. Collision Integral SHE / ISHE CISP Conductivity  � Z I 1 = n imp d 2 p Charge c 1 ( ⇢ p − ⇢ k ) + c 2 · ( m p − m k ) − c 3 · ( m p + m k ) � ( ✏ p − ✏ k ) 2 ⇡ ~  � Z I 2 = n imp Spin d 2 p c 1 ( m p − m k ) + c 2 ( ⇢ p − ⇢ k ) + c 3 ( ⇢ p − ⇢ k ) + K � ( ✏ p − ✏ k ) 2 ⇡ ~ Anisotropic spin precession (ASP) Skew scattering rate Drude relaxation rate scattering rate c 3 c 1 c 2 Scattering rate ∝ Probability = (Amplitude) × (Amplitude) ∗ 2 n imp n imp n imp = T + T − kp × kp T + kp k k p p k p C Huang, Y Chong, and MAC, Phys Rev B (2016)

  25. Keldysh: Smooth weak disorder C Huang, M Milletari, and MAC, arxiv:17061316 (2017) (accepted in PRB)

  26. Linear Response & Direct Magnetoelectric Coupling (DMC) C Huang, Y Chong, and MAC, Phys Rev B (2016)         O θ sH τ D α asp J x J x E x 0 E  =  + σ D J z J z − θ sH τ D α R 0 0       y y O τ EY α asp − τ EY α R M y M y 0 0 Onsager R ij = ✏ i ✏ j R ji (TR parity ✏ i = ± 1) a ) J Charge current J z y θ sH α asp M y E x J M Magnetization Spin current (Non-equilibrium spin polarization) α R

  27. Extrinsic CISP? Yes! Two mechanisms a ) J 50 Charge current 40 θ sH α asp 30 20 10 J M Magnetization Spin current (Non-equilibrium 0 spin polarization) α R Eq. (1) to firs 50 M y = σ cisp E x , w 40 30 σ cisp = σ D ( θ sH α R τ s + α asp τ s ) . 20 10 ASP Edelstein effect: 0 SHE × Rashba Scattering - 0.4 - 0.2 0.0 0.2 0.4 Controlled by gating C Huang, Y Chong, and MAC, Phys Rev B (2016)

  28. Outline: Part I Extrinsic Spin Hall Effect and Mott Scattering Indirect Magneto-electric Coupling: Edelstein Effect Direct Magneto-electric Coupling: Anisotropic Spin Precession What about experiments? Non local probes, Hanle, and all that

  29. Nonlocal Resistance (or Mott’s double scattering) Nonlocal Electric J c Voltage field C2 C4 Direct Inverse E m J s C3 C1 Direct Magnetoelectric SHE Coupling (ASP) J Hirsch PRL (1999) C Huang, Y Chong, and MAC, E M Hankiewiz et al PRB (2004) arXiv:1702.04955 (2017) D Abanin et al PRB (2007)

  30. Anomalous Hanle spin precession C Huang, Y Chong, and MAC, Phys. Rev. Lett. (2017) Hanle effect is qualitatively different for different spin- charge conversion mechanism. It may become asymmetric. 3 3 3 SHE~ASP SHE>>ASP 2 2 2 R nl ê r xx H 10 - 3 L R nl ê r xx H 10 - 3 L R nl ê r xx H 10 - 3 L τ J B k 1 1 1 0 0 0 - 1 - 1 - 1 ASP>>SHE - 2 - 2 - 2 τ J B k - 3 - 3 - 3 - 10 - 10 - 5 - 5 0 0 5 5 10 10 - 10 - 5 0 5 10 w L t s w L t s ∝ B k w L t s

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend