lax algebraic theories and closed objects
play

Lax-algebraic theories and closed objects Dirk Hofmann University - PowerPoint PPT Presentation

Lax-algebraic theories and closed objects Dirk Hofmann University of Aveiro dirk@mat.ua.pt 1 A lax-algebraic theory T is a triple T = ( T , V , ) consisting of a monad T = ( T, e, m ), a quantale V = ( V , , k )


  1. Lax-algebraic theories and closed objects Dirk Hofmann University of Aveiro dirk@mat.ua.pt 1

  2. � � � � � A lax-algebraic theory T is a triple T = ( T , V , ξ ) consisting of a monad T = ( T, e, m ), a quantale V = ( V , ⊗ , k ) and a map ξ : T V → V such that (M e ) 1 V ≤ ξ · e V , (M m ) ξ · Tξ ≤ ξ · m V , T ( ⊗ ) T k � (Q ⊗ ) T ( V × V ) (Q k ) T 1 T V T V ξ ! ≤ ≤ ξ � V , � V , 1 V × V k ⊗ (Q W ) ( ξ X ) X : P V → P V T is a natural transformation. 2

  3. Examples. (a). I V = ( 1 , V , 1 V ) is a strict lax-algebraic theory. (b). Let T = ( T, e, m ) be a monad where T is taut and let V be a (ccd)-quantale. Then T V = ( T , V , ξ V ) is a lax-algebraic theory, where � ξ V : T V → V , x �→ { v ∈ V | x ∈ T ( ↑ v ) } . ⊗ V = ( L , V , ξ ⊗ ) is a strict lax-algebraic theory for each (c). L quantale V , where ξ ⊗ : L V → V . ( v 1 , . . . , v n ) �→ v 1 ⊗ . . . ⊗ v n () �→ k 3

  4. The bicategory V - Mat : • objects: sets X , Y ,. . . • morphism: V -matrices r : X × Y → V , • composition: s · r ( x, z ) = � y ∈ Y r ( x, y ) ⊗ s ( y, z ) We extent T : Set → Set to T ξ : V - Mat → V - Mat by putting ξ r : TX × TY → V . T � ( x , y ) �→ ξ · Tr ( w ) w ∈ T ( X × Y ): T π X ( w )= x , T π Y ( w )= y Here ξ T r T ( X × Y ) − − → T V − → V . 4

  5. � � � � � � � The following statements hold. ξ ( r ◦ ) = T ξ ( r ) ◦ . (a). For each V -matrix r : X − → Y , T ξ f and Tf ◦ ≤ T ξ f ◦ . (b). For each function f : X → Y , Tf ≤ T (c). T ξ s · T ξ r ≤ T ξ ( s · r ) provided that T satisfies (BC), and ξ ( s · r ) provided that (Q = ξ s · T ξ r ≥ T ⊗ ) holds. T (d). The natural transformations e and m become op-lax, that is, for every V -matrix r : X − → Y we have the inequalities: e Y · r ≤ T ξ r · e X , m Y · T ξ r ≤ T ξ r · m X . ξ T e X m X � T ξ X T ξ T ξ X T ξ X X � T ξ r T ξ T ξ r � T ξ r r � ≤ � ≤ � T � T ξ Y T ξ T ξ Y ξ Y Y e Y m Y 5

  6. � � � � � � � Let T = ( T , V , ξ ) be a lax-algebraic theory. • A T -algebra ( T -category) is a pair ( X, a : TX − → X ) s. t. e X � m X � and X TX TTX TX � � � � � ≤ � � � T ξ a � � a � a � ≤ � � � � 1 X � � � � X. X TX a � k → a ( x, x ) T ξ a ( X , x ) ⊗ a ( x , x ) → a ( m X ( X ) , x ) • A map f : X → Y between T -algebras ( X, a ) and ( Y, b ) is a lax homomorphism ( T -functor) if T f � a ( x , x ) → b ( Tf ( x ) , f ( x )) . TX TY a � ≤ � b � Y X f 6

  7. • The resulting category of T -algebras and lax homomorphisms we denote by T - Alg . Examples. (a). For each quantale V , I V - Alg = V - Cat . In particular, I 2 - Alg ∼ + - Alg ∼ = Ord and I P = Met . (b). U 2 - Alg ∼ = Top . + - Alg ∼ (c). U P = Ap . V - Alg ∼ ⊗ (d). L = V - MultiCat . 7

  8. � � � � � Let T = ( T , V , ξ ) and T ′ = ( T ′ , V ′ , ξ ′ ) be lax-algebraic theories. • A morphism ( j, ϕ ) : T ′ → T of lax-algebraic theories is a pair ( j, ϕ ) consisting of a monad morphism j : T ′ → T and a lax homomorphism of quantales ϕ : V → V ′ such that ξ ′ · T ′ ϕ ≤ ϕ · ξ · j V . j V T ′ V T V T ′ ϕ T ′ V ′ ≤ ξ ξ ′ V ′ V ϕ 8

  9. From now on we consider a strict lax-algebraic theory T = ( T , V , ξ ) where T satisfies (BC). Examples. (a). The identity theory I V , for each quantale V . ⊗ V = ( L , V , ξ ⊗ ). (b). For each quantale V , the theory L (c). Any lax-algebraic theory T = ( T , V , ξ ) with a (BC)-monad T , ⊗ = ∧ and ξ a Eilenberg-Moore algebra. + = ( U , P (d). The theory U P + ). + , ξ P 9

  10. Then • V becomes a T -algebra ( V , hom ξ ) where hom ξ = hom · ξ , that is, hom ξ ( v , v ) = hom( ξ ( v ) , v ) . • the tensor product ⊗ on V can be transported to T - Alg by putting ( X, a ) ⊗ ( Y, b ) = ( X × Y, c ) where c ( w , ( x, y )) = a ( x , x ) ⊗ b ( y , y ) . 10

  11. X ? When X ⊗ has a right adjoint Note that 1 → Y X X ⊗ 1 → Y Hence we consider { f : ˆ X → Y | f is a lax homomorphism } , where  a ( x , x ) if T !( x ) = e 1 ( ⋆ ),  a ( x , x ) = ˆ ⊥ else;  and � d ( p , h ) = hom( a ( Tπ X ( q ) , x ) , b ( T ev( q ) , h ( x ))) . q ∈ T ( Y X × X ) ,x ∈ X q �→ p 11

  12. Letv X = ( X, a ) be a T -algebra. • Assume that a · T ξ a = a · m X . Then d is transitive. • Assume that the structure d on V X is transitive. Then a · T ξ a = a · m X . • Each T -algebra is closed in T - Alg . • Each V -category is closed in T - Alg provided that Te · e = m ◦ · e . 12

  13. � � The following assertions hold. • � : V I → V is a lax homomorphism. • hom( v, ) : V → V is a lax homomorphism for each v ∈ V . • v ⊗ : V → V is a lax homomorphism for each v ∈ V which satisfies T v � T 1 T V ≥ ξ ! � V . 1 v • For each T -algebra I , � : V I → V is a lax homomorphism. 13

  14. � � � � � � � � � T - Kleisli . objects: sets X , Y , . . . morphism: V -matrices a : TX − → Y . ξ a · m ◦ composition: b ◦ a := b · T X , m ◦ X � TX TY TX TTX � � � � T ξ a � � � � � TY � a � b � � � b ◦ a � � � � � b � � Y Z Z 14

  15. � � � Then e ◦ X : TX − → X is a lax identity for “ ◦ ”, that is a ◦ e ◦ e ◦ X = a and X ◦ a ≥ a . Moreover, c ◦ ( b ◦ a ) = ( c ◦ b ) ◦ a . X ) is a T -algebra iff e ◦ ( X, a : TX − → X ≤ a and a ◦ a ≤ a . Example: U 2 • e ◦ X is also a left unit (precisely) if we restrict ourself to those a : UX − → Y where { x ∈ UX | a ( x , y ) = true } is closed in UX . • This restriction of U 2 - Kleisli is 2-equivalent to CSet (where a morphism from X to Y is a finitely additive map c : PX → PY ). 15

  16. � � Let X = ( X, a ) and Y = ( Y, b ) be T -algebras. • A ( T , V )- bimodule ψ : ( X, a ) − ◦ ( Y, b ) is a matrix ψ : TX − → → Y such that ψ ◦ a ≤ ψ and b ◦ ψ ≤ ψ . • For ( T , V )-categories ( X, a ) and ( Y, b ), and a V -matrix ψ : TX − → Y , the following assertions are equivalent. ◦ ( Y, b ) is a ( T , V )-bimodule. (a). ψ : ( X, a ) − → (b). Both ψ : | X | ⊗ Y → V and ψ : X op ⊗ Y → V are ( T , V )-functors. 16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend