large sets of q analogs of designs
play

Large Sets of q -Analogs of Designs Michael Braun, Michael Kiermaier, - PDF document

Large Sets of q -Analogs of Designs Michael Braun, Michael Kiermaier, Axel Kohnert , Reinhard Laue Universit at Bayreuth, laue@uni-bayreuth.de Abstract Joining small Large Sets of t -designs to form large Large Sets of t -designs allows


  1. Large Sets of q -Analogs of Designs Michael Braun, Michael Kiermaier, Axel Kohnert ∗ , Reinhard Laue Universit¨ at Bayreuth, laue@uni-bayreuth.de Abstract Joining small Large Sets of t -designs to form large Large Sets of t -designs allows to recursively construct infinite series of t -designs. This concept is generalized from ordinary designs over sets to designs over finite vector spaces, i.e. designs over GF ( q ), using three types of joins. While there are only very few general constructions of such q -designs known so far, from only one large set in the literature and two new ones in this paper this way many infinite series of Large Sets of q -designs with constant block sizes are derived. Keywords: q -analog, t -design, Large Set, subspace design AMS classifications : Primary 51E20; Secondary 05B05, 05B25, 11Txx ∗ † 11.12.2013 1

  2. 1 Classic and Subspace t -designs t -( v, k, λ ) design D = ( V, B ) t -( v, k, λ ) q design D = ( V, B ) V point set size v V GF ( q )- vector space dim v � V � V � � B ⊆ B ⊆ k k q � V � V � � each T ∈ in λ B ∈ B each T ∈ q in λ B ∈ B t t Subspace designs Cameron 1974 [10]: Infinite series for t = 2: Thomas 1987 q = 2 [18] Suzuki q > 2 [14], [15], Itoh 1997 [12]. ∀ t ∃ simple t -subspace design: Fazelli,Lovett,Vardy 2013 [11], q -analog to Teirlinck’s theorem [16]: Computer search: t = 2 , 3 M.,S. Braun et al. 2005-2011 [4, 5, 9, 6], 2-(13 , 3 , 1) 2 Braun,Etzion, ¨ O sterg ˚ a rd,Wassermann,Vardy 2013 [7], Large Set: � V � LS q [ N ]( t, k, v ) partition of q into N disjoint t -( v, k, λ ) q k with λ = [ v − t k − t ] q N . LS 2 [3](2 , 3 , 8) Braun,Kohnert, ¨ O sterg ˚ a rd,Wassermann 2013[8] � V � Three disjoint 2-(8 , 3 , 21) 2 that partition 3 2 2

  3. Table 1: Table of LS 2 [3](2 , k, v ) v S t a r t : ? 8 3 - ? 9 - - ? 10 - - - 11 - - - - 12 - - - - 13 3 ? 5 - 14 - ? ? - - 15 - - 5 - - - 16 - - - - - - 17 - - - - - - - 18 - - - - - - - 19 3 ? 5 ? ? ? 9 ? 20 - ? ? ? ? ? ? ? 21 - - ? ? ? ? ? ? ? 22 - - - ? ? ? ? ? ? 23 - - - - ? ? ? ? ? ? 24 - - - - - ? ? ? ? ? 25 3 ? 5 - - - ? ? 11 ? ? 26 - ? ? - - - - ? ? ? ? 27 - - 5 - - - - - 11 ? ? ? 28 - - - - - - - - - ? ? ? 29 - - - - - - - - - - ? ? ? 30 - - - - - - - - - - - ? ? 31 3 ? 5 - - - ? ? 11 - - - 15 ? 32 - ? ? - - - - ? ? - - - - ? 33 - - ? - - - - - ? - - - - - ? 34 - - - - - - - - - - - - - - - 35 - - - - - - - - - - - - - - - 36 - - - - - - - - - - - - - - - - 37 3 ? 5 ? ? ? 9 ? 11 ? ? ? 15 ? 17 - - 38 - ? ? ? ? ? ? ? ? ? ? ? ? ? ? - - 39 - - 5 ? ? ? ? ? 11 ? ? ? ? ? 17 - - - 40 3

  4. Table 2: Table of LS q [2](2 , k, v ) , q = 3 , 5 v S t a r t ( N e w ) : 3 6 - 7 - - 8 - - 9 3 ? ? 10 - ? ? 11 - - ? ? 12 - - - ? 13 3 - - - 7 14 - - - - - 15 - - - - - - 16 - - - - - - 17 3 ? ? ? 7 ? ? 18 - ? ? ? ? ? ? 19 - - ? ? ? ? ? ? 20 - - - ? ? ? ? ? 21 3 - - - 7 ? ? ? ? 22 - - - - - ? ? ? ? 23 - - - - - - ? ? ? ? 24 - - - - - - - ? ? ? 25 3 ? ? ? 7 - - - ? ? ? 26 - ? ? ? ? - - - - ? ? 27 - - ? ? ? - - - - - ? ? 28 - - - ? ? - - - - - - ? 29 3 - - - 7 - - - ? - - - 15 30 - - - - - - - - - - - - - 31 - - - - - - - - - - - - - - 32 - - - - - - - - - - - - - - 33 3 ? ? ? 7 ? ? ? ? ? ? ? 15 ? ? 34 - ? ? ? ? ? ? ? ? ? ? ? ? ? ? 35 - - ? ? ? ? ? ? ? ? ? ? ? ? ? ? 36 - - - ? ? ? ? ? ? ? ? ? ? ? ? ? 37 3 - - - 7 ? ? ? ? ? ? ? 15 ? ? ? ? 38 - - - - - ? ? ? ? ? ? ? ? ? ? ? ? 39 - - - - - ? ? ? ? ? ? ? ? ? ? ? ? 40 4

  5. Recursion : (classical strategy, Khosrovshahi, Ajoodani- Namini [1, 2, 3] Teirlinck [17]) Partition the problem, insert small Large Sets into parts to obtain large Large Sets. Notation: Part ( S ) set of partitions of set S , First partition � V � {B 1 , . . . , B m } ∈ Part ( ) k q Second partition Decompose each B i into a join of two components: 5

  6. • Ordinary join at U ≤ V : k 2 V ✭ ✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭✭ U + K r r U r K ✭ ✭✭✭✭✭✭✭✭✭✭✭ r K 1 r k 1 ( U + K ) /U = K 2 { 0 } r K 1 ∗ U K 2 = { K : U ∩ K = K 1 , ( U + K ) /U = K 2 } � U � V/U � � For K 1 ⊆ q , K 2 ⊆ k 1 k 2 q K 1 ∗ U K 2 = ∪{ ( K 1 ∗ U K 2 ) : K 1 ∈ K 1 , K 2 ∈ K 2 } Partition by ordinary joins: q -Vandermonde: k 1 = k � v 1 + v 2 � � v 1 � � v 2 � � q ( v 1 − k 1 )( k − k 1 ) = · k k 1 k − k 1 q q q k 1 =0 Example 1.1. For v = 10 , k = 3 , v 1 = 6 , v 2 = 4 the formula reads as � 10 � � 6 � � 4 � � 6 � � 4 � � 6 � � 4 � � 6 � � 4 � = q 18 + q 10 + q 6 + q 0 . 3 0 3 1 2 2 1 3 0 q q q q q q q q q 6

  7. • Avoiding join and Covering join V ✭✭✭✭✭✭✭✭✭✭✭✭✭✭ ✭ W r U 2 r � r � � W/U 2 = K 2 F � � ✭ ✭✭✭✭✭ U 1 � r ✭ ✭✭✭✭✭ K F � r r � � � � ✭ ✭✭✭✭✭ K 1 r K ¯ r � F { 0 } r Avoiding join: K 1 ∗ ¯ F K 2 = { K ¯ F : K ¯ F ∩ U 2 = K ¯ F ∩ U 1 = K 1 , U 2 + K ¯ F = W } . � U � V/U � � K 1 ⊆ q , K 2 ⊆ k 1 k 2 q K 1 ∗ ¯ F K 2 = ∪{ ( K 1 ∗ ¯ F K 2 ) : K 1 ∈ K 1 , K 2 ∈ K 2 } Covering join: K 1 ∗ F K 2 = { K F : K F ∩ U 1 = K 1 , U 1 + K F = U 2 + K F = W } . � U � V/U � � K 1 ⊆ q , K 2 ⊆ k 1 k 2 q K 1 ∗ F K 2 = ∪{ ( K 1 ∗ F K 2 ) : K 1 ∈ K 1 , K 2 ∈ K 2 } 7

  8. V = V 0 > V 1 > . . . > V v = { 0 } each F i = V i − 1 /V i of dimension 1. v ≥ k + s . Partition by avoiding joins: k � v � � v − s − i � � s + i − 1 � � q ( v − k − s ) i = . k i k − i q q q i =0 Example 1.2. For v = 10 , k = 3 , s = 3 the formula reads as � 10 � � 3 � � 6 � � 4 � � 5 � � 5 � � 4 � � 6 � � 3 � = q 0 + q 4 + q 8 + q 12 . 3 0 3 1 2 2 1 3 0 q q q q q q q q q Partition by covering joins: k = k 1 + k 2 + 1 � i v − k 2 − 1 � v � � � v − i − 1 � � q ( i − k 1 )( k 2 +1) = . k k 1 k 2 q q q i = k 1 Example 1.3. For v = 10 , k 1 = 1 , k 2 = 1 the formula reads as � 10 � � 8 � � 2 � � 7 � � 3 � � 6 � + q 2 + q 4 = + 3 1 1 1 1 1 q q q q q q � 4 � � 5 � � 5 � � 4 � � 6 � � 3 � � 7 � � 2 � q 6 + q 8 + q 10 + q 12 . 1 1 1 1 1 1 1 1 q q q q q q q q 8

  9. � V {B 1 , . . . , B m } ∈ Part ( � q ) is ( N, t ) partitionable: k ∀ i B i = B ( i ) ∪B ( i ) 1 ˙ ∪ . . . ˙ N � V � , ∀B ( i ) |{ B ∈ B ( i ) ∀ T ∈ : T ⊆ B }| = λ ( T, i ) , j j t q independent of j . � V If {B 1 , . . . , B m } ∈ Part ( � q ) is ( N, t ) partition- k able then the designs D j = ∪ m i =1 B ( i ) for j = 1 , . . . , N j form an LS q [ N ]( t, k, v ). 9

  10. Theorem 1.1. Joining Partitions ∗ one of the 3 joins (either U 1 = U 2 or dim ( U 1 /U 2 ) = 1 ): � U 2 � � V/U 1 � {K 1 1 , . . . , K 1 N } ∈ Part ( ) ( N, t ) partition, M ⊆ k 1 k 2 q q ⇒ {K 1 1 ∗ M, . . . , K 1 = N ∗ M ) } is an ( N, t ) partition � U 2 � � V/U 1 � , {K 2 1 , . . . , K 2 M ⊆ N } ∈ Part ( ) ( N, t ) partition k 1 k 2 q q ⇒ { M ∗ K 2 1 , . . . , M ∗ K 2 = N ) } is an ( N, t ) partition � U 2 � {K 1 1 , . . . , K 1 N } ∈ Part ( ) ( N, t 1 ) partition, k 1 q � V/U 1 � {K 2 1 , . . . , K 2 N } ∈ Part ( ) ( N, t 2 ) partition, k 2 q Lat an N × N Latin Square. = ⇒ {∪ Lat ( r,s )= a K 1 r ∗K 2 s : a = 1 , . . . , N } is an ( N, t 1 + t 2 + 1) partition. Proof analog to the classical case. 10

  11. Doubling the point set by Ordinary join: LS 2 [3](2 , 3 , 8) ↔ dual LS 2 [3](2 , 5 , 8) derived LS 2 [3](2 , 5 , 8) = LS 2 [3](1 , 4 , 7) residual LS 2 [3](2 , 3 , 8) = LS 2 [3](1 , 3 , 7) ——————————————– Point extension: LS 2 [3](1 , 4 , 8) Ordinary joins at U < V, dim ( U ) = 8 , dim ( V ) = 16: � V/U � { LS 2 [3](2 , 5 , 8) ∗ U 2 , 0 LS 2 [3](1 , 4 , 8) ∗ U LS 2 [3](0 , 1 , 8), � V/U � LS 2 [3](2 , 3 , 8) ∗ U 2 , 2 � U � 2 ∗ U LS 2 [3](2 , 3 , 8), 2 LS 2 [3](0 , 1 , 8) ∗ U LS 2 [3](1 , 4 , 8) � U � 2 ∗ U LS 2 [3](2 , 5 , 8) } . 0 ———————————————– LS 2 [ 3 ]( 2 , 5 , 16 ) dual to LS 2 [ 3 ]( 2 , 11 , 16 ) 11

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend