large deviation for and by amateur
play

Large Deviation for (and by) amateur Raphal Chtrite CNRS, - PowerPoint PPT Presentation

Large Deviation for (and by) amateur Raphal Chtrite CNRS, Laboratoire Jean-Alexandre Dieudonn Nice 30/05/2011 Raphal Chtrite (cnrs) Grandes dviation 30/05/2011 1 / 16 Plan Introduction 1 Large deviation for a Markovian


  1. Large Deviation for (and by) amateur Raphaël Chétrite CNRS, Laboratoire Jean-Alexandre Dieudonné Nice 30/05/2011 Raphaël Chétrite (cnrs) Grandes déviation 30/05/2011 1 / 16

  2. Plan Introduction 1 Large deviation for a Markovian process 2 Go Beyond the current 3 Generalization of Gallavotti-Cohen-Evans-Morriss symmetry 4 Raphaël Chétrite (cnrs) Grandes déviation 30/05/2011 2 / 16

  3. Caveat ”Lorsque l’on expose ...on peut supposer que chacun connait les variétés de Stein ou les nombres de Betti d’un espace topologique ; mais si l’on a besoin d’une intégrale stochastique, on doit définir à partir de zéro les filtrations, les processus prévisibles, les martingales, etc. Il y a la quelque chose d’anormal. Les raisons en sont bien sûr nombreuses, à commencer par le vocabulaire ésotérique des probabilistes”. Laurent Schwartz Raphaël Chétrite (cnrs) Grandes déviation 30/05/2011 3 / 16

  4. Large Deviation theory ”Improbable events permit themselves the luxury of occurring.” C.Chan 1928 Heuristic of large deviation Random variable A T which converges toward � a � Large deviation : How improbable for A T to converge towards a which is different from the typical value � a � (rare events) : LDP : � 1 A T = a � ≍ exp ( − TI ( a )) I ( a ) is called the rate function (or fluctuation functional)(or action functional). Large deviation theory : Prove the LDP and calculate the rate function. Raphaël Chétrite (cnrs) Grandes déviation 30/05/2011 4 / 16

  5. Large Deviation theory ”Improbable events permit themselves the luxury of occurring.” C.Chan 1928 Heuristic of large deviation Random variable A T which converges toward � a � Large deviation : How improbable for A T to converge towards a which is different from the typical value � a � (rare events) : LDP : � 1 A T = a � ≍ exp ( − TI ( a )) I ( a ) is called the rate function (or fluctuation functional)(or action functional). Large deviation theory : Prove the LDP and calculate the rate function. Raphaël Chétrite (cnrs) Grandes déviation 30/05/2011 4 / 16

  6. Large Deviation theory ”Improbable events permit themselves the luxury of occurring.” C.Chan 1928 Heuristic of large deviation Random variable A T which converges toward � a � Large deviation : How improbable for A T to converge towards a which is different from the typical value � a � (rare events) : LDP : � 1 A T = a � ≍ exp ( − TI ( a )) I ( a ) is called the rate function (or fluctuation functional)(or action functional). Large deviation theory : Prove the LDP and calculate the rate function. Raphaël Chétrite (cnrs) Grandes déviation 30/05/2011 4 / 16

  7. Scaled cumulant generating function (log-Laplace) 1 Λ( s ) ≡ lim T →∞ T ln � exp ( sTA T ) � Varadhan Theorem : If A T satisfies the large deviation principle then �� � Λ( s ) ≡ lim T →∞ 1 T ln da exp ( sTa ) exp ( − TI ( a )) ≡ �� � lim T →∞ 1 = sup a ∈ℜ ( sa − I ( a )) ≡ I ⋆ ( s ) T ln da exp ( T ( sa − I ( a )) Gartner-Ellis Theorem : If Λ( s ) exist and is differentiable, then the LDP exists, I ( a ) = sup s ∈ℜ ( sa − Λ( s )) ≡ Λ ⋆ ( a ) and is strictly convex. Why rare events can be important Bibliography : Den Hollander F, Large Deviations (Providence : Field Institute Monographs) 2000 Touchette H, The large deviation approach to statistical mechanics. Phys. Rep. 2009 Raphaël Chétrite (cnrs) Grandes déviation 30/05/2011 5 / 16

  8. Scaled cumulant generating function (log-Laplace) 1 Λ( s ) ≡ lim T →∞ T ln � exp ( sTA T ) � Varadhan Theorem : If A T satisfies the large deviation principle then �� � Λ( s ) ≡ lim T →∞ 1 T ln da exp ( sTa ) exp ( − TI ( a )) ≡ �� � lim T →∞ 1 = sup a ∈ℜ ( sa − I ( a )) ≡ I ⋆ ( s ) T ln da exp ( T ( sa − I ( a )) Gartner-Ellis Theorem : If Λ( s ) exist and is differentiable, then the LDP exists, I ( a ) = sup s ∈ℜ ( sa − Λ( s )) ≡ Λ ⋆ ( a ) and is strictly convex. Why rare events can be important Bibliography : Den Hollander F, Large Deviations (Providence : Field Institute Monographs) 2000 Touchette H, The large deviation approach to statistical mechanics. Phys. Rep. 2009 Raphaël Chétrite (cnrs) Grandes déviation 30/05/2011 5 / 16

  9. Scaled cumulant generating function (log-Laplace) 1 Λ( s ) ≡ lim T →∞ T ln � exp ( sTA T ) � Varadhan Theorem : If A T satisfies the large deviation principle then �� � Λ( s ) ≡ lim T →∞ 1 T ln da exp ( sTa ) exp ( − TI ( a )) ≡ �� � lim T →∞ 1 = sup a ∈ℜ ( sa − I ( a )) ≡ I ⋆ ( s ) T ln da exp ( T ( sa − I ( a )) Gartner-Ellis Theorem : If Λ( s ) exist and is differentiable, then the LDP exists, I ( a ) = sup s ∈ℜ ( sa − Λ( s )) ≡ Λ ⋆ ( a ) and is strictly convex. Why rare events can be important Bibliography : Den Hollander F, Large Deviations (Providence : Field Institute Monographs) 2000 Touchette H, The large deviation approach to statistical mechanics. Phys. Rep. 2009 Raphaël Chétrite (cnrs) Grandes déviation 30/05/2011 5 / 16

  10. Scaled cumulant generating function (log-Laplace) 1 Λ( s ) ≡ lim T →∞ T ln � exp ( sTA T ) � Varadhan Theorem : If A T satisfies the large deviation principle then �� � Λ( s ) ≡ lim T →∞ 1 T ln da exp ( sTa ) exp ( − TI ( a )) ≡ �� � lim T →∞ 1 = sup a ∈ℜ ( sa − I ( a )) ≡ I ⋆ ( s ) T ln da exp ( T ( sa − I ( a )) Gartner-Ellis Theorem : If Λ( s ) exist and is differentiable, then the LDP exists, I ( a ) = sup s ∈ℜ ( sa − Λ( s )) ≡ Λ ⋆ ( a ) and is strictly convex. Why rare events can be important Bibliography : Den Hollander F, Large Deviations (Providence : Field Institute Monographs) 2000 Touchette H, The large deviation approach to statistical mechanics. Phys. Rep. 2009 Raphaël Chétrite (cnrs) Grandes déviation 30/05/2011 5 / 16

  11. Pedestrian approach of Level in Large Deviation Level 1 : empirical mean R T Large deviation for empirical mean of type A e 1 T ≡ 0 A ( x t ) dt T Level 2 : Measure empiric R T Large deviation of local time spend in a state ρ e 1 1 , T ( x ) = 0 δ ( X t − x ) dt T Level 2 → Level 1 : contraction principle The level 1 can be obtain by contraction of Level 2 because A e dxA ( x ) ρ e R T = T ( x ) . Then � δ ( A e dxA ( x ) ρ ( x )= a d [ ρ ] � δ ( ρ e R T − a ) � = T − ρ ) � ≍ R R ` ` ´´ dxA ( x ) ρ ( x )= a d [ ρ ] exp ( − TI 2 [ ρ ]) ≍ exp − T inf ρ/ dxA ( x ) ρ ( x )= a ( I 2 [ ρ ]) R R Raphaël Chétrite (cnrs) Grandes déviation 30/05/2011 6 / 16

  12. Pedestrian approach of Level in Large Deviation Level 1 : empirical mean R T Large deviation for empirical mean of type A e 1 T ≡ 0 A ( x t ) dt T Level 2 : Measure empiric R T Large deviation of local time spend in a state ρ e 1 1 , T ( x ) = 0 δ ( X t − x ) dt T Level 2 → Level 1 : contraction principle The level 1 can be obtain by contraction of Level 2 because A e dxA ( x ) ρ e R T = T ( x ) . Then � δ ( A e dxA ( x ) ρ ( x )= a d [ ρ ] � δ ( ρ e R T − a ) � = T − ρ ) � ≍ R R ` ` ´´ dxA ( x ) ρ ( x )= a d [ ρ ] exp ( − TI 2 [ ρ ]) ≍ exp − T inf ρ/ dxA ( x ) ρ ( x )= a ( I 2 [ ρ ]) R R Raphaël Chétrite (cnrs) Grandes déviation 30/05/2011 6 / 16

  13. Pedestrian approach of Level in Large Deviation Level 1 : empirical mean R T Large deviation for empirical mean of type A e 1 T ≡ 0 A ( x t ) dt T Level 2 : Measure empiric R T Large deviation of local time spend in a state ρ e 1 1 , T ( x ) = 0 δ ( X t − x ) dt T Level 2 → Level 1 : contraction principle The level 1 can be obtain by contraction of Level 2 because A e dxA ( x ) ρ e R T = T ( x ) . Then � δ ( A e dxA ( x ) ρ ( x )= a d [ ρ ] � δ ( ρ e R T − a ) � = T − ρ ) � ≍ R R ` ` ´´ dxA ( x ) ρ ( x )= a d [ ρ ] exp ( − TI 2 [ ρ ]) ≍ exp − T inf ρ/ dxA ( x ) ρ ( x )= a ( I 2 [ ρ ]) R R Raphaël Chétrite (cnrs) Grandes déviation 30/05/2011 6 / 16

  14. Pedestrian approach of Level in Large Deviation Level 1 : empirical mean R T Large deviation for empirical mean of type A e 1 T ≡ 0 A ( x t ) dt T Level 2 : Measure empiric R T Large deviation of local time spend in a state ρ e 1 1 , T ( x ) = 0 δ ( X t − x ) dt T Level 2 → Level 1 : contraction principle The level 1 can be obtain by contraction of Level 2 because A e dxA ( x ) ρ e R T = T ( x ) . Then � δ ( A e dxA ( x ) ρ ( x )= a d [ ρ ] � δ ( ρ e R T − a ) � = T − ρ ) � ≍ R R ` ` ´´ dxA ( x ) ρ ( x )= a d [ ρ ] exp ( − TI 2 [ ρ ]) ≍ exp − T inf ρ/ dxA ( x ) ρ ( x )= a ( I 2 [ ρ ]) R R Raphaël Chétrite (cnrs) Grandes déviation 30/05/2011 6 / 16

  15. Pedestrian approach of Level in Large Deviation Level 1 : empirical mean R T Large deviation for empirical mean of type A e 1 T ≡ 0 A ( x t ) dt T Level 2 : Measure empiric R T Large deviation of local time spend in a state ρ e 1 1 , T ( x ) = 0 δ ( X t − x ) dt T Level 2 → Level 1 : contraction principle The level 1 can be obtain by contraction of Level 2 because A e dxA ( x ) ρ e R T = T ( x ) . Then � δ ( A e dxA ( x ) ρ ( x )= a d [ ρ ] � δ ( ρ e R T − a ) � = T − ρ ) � ≍ R R ` ` ´´ dxA ( x ) ρ ( x )= a d [ ρ ] exp ( − TI 2 [ ρ ]) ≍ exp − T inf ρ/ dxA ( x ) ρ ( x )= a ( I 2 [ ρ ]) R R Raphaël Chétrite (cnrs) Grandes déviation 30/05/2011 6 / 16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend