large cardinals and pcf theory in topology and infinite
play

Large cardinals and pcf theory in topology and infinite - PowerPoint PPT Presentation

Large cardinals and pcf theory in topology and infinite combinatorics Lajos Soukup Alfrd Rnyi Institute of Mathematics Hungarian Academy of Sciences RIMS Set Theory Workshop 2010 Soukup, L (HAS) RIMS 2010 1 / 23 Content Pcf theory and


  1. Cofinality spectrum of groups Sym ( ω ) the group of all permutation of natural numbers Define the cofinality spectrum of Sym ( ω ) as follows: λ ∈ CF ( Sym ( ω )) iff Sym ( ω ) is the union of an increasing chain of λ proper subgroups. � ω increasing � Shelah and Thomas: (1) if { κ n : n < ω } ∈ ( Sym ( ω )) then pcf ( { κ n : n < ω } ) ⊂ CF ( Sym ( ω )) (2) IF GCH holds and K ⊂ Reg s.t Soukup, L (HAS) RIMS 2010 8 / 23

  2. Cofinality spectrum of groups Sym ( ω ) the group of all permutation of natural numbers Define the cofinality spectrum of Sym ( ω ) as follows: λ ∈ CF ( Sym ( ω )) iff Sym ( ω ) is the union of an increasing chain of λ proper subgroups. � ω increasing � Shelah and Thomas: (1) if { κ n : n < ω } ∈ ( Sym ( ω )) then pcf ( { κ n : n < ω } ) ⊂ CF ( Sym ( ω )) (2) IF GCH holds and K ⊂ Reg s.t (i) K has maximal elements, Soukup, L (HAS) RIMS 2010 8 / 23

  3. Cofinality spectrum of groups Sym ( ω ) the group of all permutation of natural numbers Define the cofinality spectrum of Sym ( ω ) as follows: λ ∈ CF ( Sym ( ω )) iff Sym ( ω ) is the union of an increasing chain of λ proper subgroups. � ω increasing � Shelah and Thomas: (1) if { κ n : n < ω } ∈ ( Sym ( ω )) then pcf ( { κ n : n < ω } ) ⊂ CF ( Sym ( ω )) (2) IF GCH holds and K ⊂ Reg s.t (i) K has maximal elements, (ii) if µ is singular, sup ( K ∩ µ ) = µ then µ + ∈ K Soukup, L (HAS) RIMS 2010 8 / 23

  4. Cofinality spectrum of groups Sym ( ω ) the group of all permutation of natural numbers Define the cofinality spectrum of Sym ( ω ) as follows: λ ∈ CF ( Sym ( ω )) iff Sym ( ω ) is the union of an increasing chain of λ proper subgroups. � ω increasing � Shelah and Thomas: (1) if { κ n : n < ω } ∈ ( Sym ( ω )) then pcf ( { κ n : n < ω } ) ⊂ CF ( Sym ( ω )) (2) IF GCH holds and K ⊂ Reg s.t (i) K has maximal elements, (ii) if µ is singular, sup ( K ∩ µ ) = µ then µ + ∈ K (iii) if µ is inaccessible, sup ( K ∩ µ ) = µ then µ ∈ K , Soukup, L (HAS) RIMS 2010 8 / 23

  5. Cofinality spectrum of groups Sym ( ω ) the group of all permutation of natural numbers Define the cofinality spectrum of Sym ( ω ) as follows: λ ∈ CF ( Sym ( ω )) iff Sym ( ω ) is the union of an increasing chain of λ proper subgroups. � ω increasing � Shelah and Thomas: (1) if { κ n : n < ω } ∈ ( Sym ( ω )) then pcf ( { κ n : n < ω } ) ⊂ CF ( Sym ( ω )) (2) IF GCH holds and K ⊂ Reg s.t (i) K has maximal elements, (ii) if µ is singular, sup ( K ∩ µ ) = µ then µ + ∈ K (iii) if µ is inaccessible, sup ( K ∩ µ ) = µ then µ ∈ K , THEN CF ( Sym ( ω )) = K in some c.c.c generic extension Soukup, L (HAS) RIMS 2010 8 / 23

  6. Cofinality spectrum of groups Sym ( ω ) the group of all permutation of natural numbers Define the cofinality spectrum of Sym ( ω ) as follows: λ ∈ CF ( Sym ( ω )) iff Sym ( ω ) is the union of an increasing chain of λ proper subgroups. � ω increasing � Shelah and Thomas: (1) if { κ n : n < ω } ∈ ( Sym ( ω )) then pcf ( { κ n : n < ω } ) ⊂ CF ( Sym ( ω )) (2) IF GCH holds and K ⊂ Reg s.t (i) K has maximal elements, (ii) if µ is singular, sup ( K ∩ µ ) = µ then µ + ∈ K (iii) if µ is inaccessible, sup ( K ∩ µ ) = µ then µ ∈ K , THEN CF ( Sym ( ω )) = K in some c.c.c generic extension Problem : Full characterization of CF ( Sym ( ω )) Soukup, L (HAS) RIMS 2010 8 / 23

  7. Additivity spectrum of ideals Soukup, L (HAS) RIMS 2010 9 / 23

  8. Additivity spectrum of ideals I ideal Soukup, L (HAS) RIMS 2010 9 / 23

  9. Additivity spectrum of ideals I ideal ADD ( I ) : the additivity spectrum of I . Soukup, L (HAS) RIMS 2010 9 / 23

  10. Additivity spectrum of ideals I ideal ADD ( I ) : the additivity spectrum of I . κ ∈ ADD ( I ) iff there is an increasing chain { A α : α < κ } ⊂ I with ∪ α<κ A α / ∈ I . Soukup, L (HAS) RIMS 2010 9 / 23

  11. Additivity spectrum of ideals I ideal ADD ( I ) : the additivity spectrum of I . κ ∈ ADD ( I ) iff there is an increasing chain { A α : α < κ } ⊂ I with ∪ α<κ A α / ∈ I . M meager ideal; N null ideal Soukup, L (HAS) RIMS 2010 9 / 23

  12. Additivity spectrum of ideals I ideal ADD ( I ) : the additivity spectrum of I . κ ∈ ADD ( I ) iff there is an increasing chain { A α : α < κ } ⊂ I with ∪ α<κ A α / ∈ I . M meager ideal; N null ideal add ( M ) = min ( ADD ( M )) , add ( N ) = min ( ADD ( N )) Soukup, L (HAS) RIMS 2010 9 / 23

  13. Additivity spectrum of ideals I ideal ADD ( I ) : the additivity spectrum of I . κ ∈ ADD ( I ) iff there is an increasing chain { A α : α < κ } ⊂ I with ∪ α<κ A α / ∈ I . M meager ideal; N null ideal add ( M ) = min ( ADD ( M )) , add ( N ) = min ( ADD ( N )) B the σ -ideal generated by the compact subsets of the irrationals. Soukup, L (HAS) RIMS 2010 9 / 23

  14. Additivity spectrum of ideals I ideal ADD ( I ) : the additivity spectrum of I . κ ∈ ADD ( I ) iff there is an increasing chain { A α : α < κ } ⊂ I with ∪ α<κ A α / ∈ I . M meager ideal; N null ideal add ( M ) = min ( ADD ( M )) , add ( N ) = min ( ADD ( N )) B the σ -ideal generated by the compact subsets of the irrationals. ( R \ Q ) ≈ ω ω Soukup, L (HAS) RIMS 2010 9 / 23

  15. Additivity spectrum of ideals I ideal ADD ( I ) : the additivity spectrum of I . κ ∈ ADD ( I ) iff there is an increasing chain { A α : α < κ } ⊂ I with ∪ α<κ A α / ∈ I . M meager ideal; N null ideal add ( M ) = min ( ADD ( M )) , add ( N ) = min ( ADD ( N )) B the σ -ideal generated by the compact subsets of the irrationals. ( R \ Q ) ≈ ω ω A ⊂ R \ Q is compact iff A is ≤ -bounded in � ω ω , ≤� . Soukup, L (HAS) RIMS 2010 9 / 23

  16. Additivity spectrum of ideals I ideal ADD ( I ) : the additivity spectrum of I . κ ∈ ADD ( I ) iff there is an increasing chain { A α : α < κ } ⊂ I with ∪ α<κ A α / ∈ I . M meager ideal; N null ideal add ( M ) = min ( ADD ( M )) , add ( N ) = min ( ADD ( N )) B the σ -ideal generated by the compact subsets of the irrationals. ( R \ Q ) ≈ ω ω A ⊂ R \ Q is compact iff A is ≤ -bounded in � ω ω , ≤� . B = { B ⊂ ω ω : B is ≤ ∗ -bounded in � ω ω , ≤ ∗ �} Soukup, L (HAS) RIMS 2010 9 / 23

  17. Additivity spectrum of ideals Soukup, L (HAS) RIMS 2010 10 / 23

  18. Additivity spectrum of ideals ADD ( I , A )= { κ ∈ Reg : ∃ increasing { A α : α < κ } ⊂ I s.t. ∪ α<κ A α = A } Soukup, L (HAS) RIMS 2010 10 / 23

  19. Additivity spectrum of ideals ADD ( I , A )= { κ ∈ Reg : ∃ increasing { A α : α < κ } ⊂ I s.t. ∪ α<κ A α = A } ADD ( I )= ∪{ ADD ( I , A ) : A ∈ I + } . Soukup, L (HAS) RIMS 2010 10 / 23

  20. Additivity spectrum of ideals ADD ( I , A )= { κ ∈ Reg : ∃ increasing { A α : α < κ } ⊂ I s.t. ∪ α<κ A α = A } ADD ( I )= ∪{ ADD ( I , A ) : A ∈ I + } . Theorem Assume that I ⊂ P ( I ) is a σ -complete ideal, Y ∈ I + , and A ⊂ ADD ( I , Y ) is countable. Then pcf ( A ) ⊂ ADD ( I , Y ) . Soukup, L (HAS) RIMS 2010 10 / 23

  21. pcf ( A ) ⊂ ADD ( I , Y ) for countable A ⊂ ADD ( I , Y ) α : α < a } ⊂ I increasing � F a = Y . For a ∈ A let F a = { F a Soukup, L (HAS) RIMS 2010 11 / 23

  22. pcf ( A ) ⊂ ADD ( I , Y ) for countable A ⊂ ADD ( I , Y ) α : α < a } ⊂ I increasing � F a = Y . For a ∈ A let F a = { F a Let κ ∈ pcf ( A ) . Fix an ultrafilter U on A such that cf ( � A / U ) = κ Soukup, L (HAS) RIMS 2010 11 / 23

  23. pcf ( A ) ⊂ ADD ( I , Y ) for countable A ⊂ ADD ( I , Y ) α : α < a } ⊂ I increasing � F a = Y . For a ∈ A let F a = { F a Let κ ∈ pcf ( A ) . Fix an ultrafilter U on A such that cf ( � A / U ) = κ Let { g α : α < κ } ⊂ � A be ≤ U -increasing, ≤ U -cofinal sequence. Soukup, L (HAS) RIMS 2010 11 / 23

  24. pcf ( A ) ⊂ ADD ( I , Y ) for countable A ⊂ ADD ( I , Y ) α : α < a } ⊂ I increasing � F a = Y . For a ∈ A let F a = { F a Let κ ∈ pcf ( A ) . Fix an ultrafilter U on A such that cf ( � A / U ) = κ Let { g α : α < κ } ⊂ � A be ≤ U -increasing, ≤ U -cofinal sequence. For g ∈ � A let U ( g )= � x ∈ I : { a ∈ A : x ∈ F a � g ( a ) } ∈ U . Soukup, L (HAS) RIMS 2010 11 / 23

  25. pcf ( A ) ⊂ ADD ( I , Y ) for countable A ⊂ ADD ( I , Y ) α : α < a } ⊂ I increasing � F a = Y . For a ∈ A let F a = { F a Let κ ∈ pcf ( A ) . Fix an ultrafilter U on A such that cf ( � A / U ) = κ Let { g α : α < κ } ⊂ � A be ≤ U -increasing, ≤ U -cofinal sequence. For g ∈ � A let U ( g )= � x ∈ I : { a ∈ A : x ∈ F a � g ( a ) } ∈ U . � U ( g α ) : α < κ � witnesses that κ ∈ ADD ( I , Y ) Soukup, L (HAS) RIMS 2010 11 / 23

  26. pcf ( A ) ⊂ ADD ( I , Y ) for countable A ⊂ ADD ( I , Y ) α : α < a } ⊂ I increasing � F a = Y . For a ∈ A let F a = { F a Let κ ∈ pcf ( A ) . Fix an ultrafilter U on A such that cf ( � A / U ) = κ Let { g α : α < κ } ⊂ � A be ≤ U -increasing, ≤ U -cofinal sequence. For g ∈ � A let U ( g )= � x ∈ I : { a ∈ A : x ∈ F a � g ( a ) } ∈ U . � U ( g α ) : α < κ � witnesses that κ ∈ ADD ( I , Y ) (1) U ( g ) ∈ I for each g ∈ � A Soukup, L (HAS) RIMS 2010 11 / 23

  27. pcf ( A ) ⊂ ADD ( I , Y ) for countable A ⊂ ADD ( I , Y ) α : α < a } ⊂ I increasing � F a = Y . For a ∈ A let F a = { F a Let κ ∈ pcf ( A ) . Fix an ultrafilter U on A such that cf ( � A / U ) = κ Let { g α : α < κ } ⊂ � A be ≤ U -increasing, ≤ U -cofinal sequence. For g ∈ � A let U ( g )= � x ∈ I : { a ∈ A : x ∈ F a � g ( a ) } ∈ U . � U ( g α ) : α < κ � witnesses that κ ∈ ADD ( I , Y ) (1) U ( g ) ∈ I for each g ∈ � A (2) If g 1 ≤ I g 2 then U ( g 1 ) ⊂ U ( g 2 ) . Soukup, L (HAS) RIMS 2010 11 / 23

  28. pcf ( A ) ⊂ ADD ( I , Y ) for countable A ⊂ ADD ( I , Y ) α : α < a } ⊂ I increasing � F a = Y . For a ∈ A let F a = { F a Let κ ∈ pcf ( A ) . Fix an ultrafilter U on A such that cf ( � A / U ) = κ Let { g α : α < κ } ⊂ � A be ≤ U -increasing, ≤ U -cofinal sequence. For g ∈ � A let U ( g )= � x ∈ I : { a ∈ A : x ∈ F a � g ( a ) } ∈ U . � U ( g α ) : α < κ � witnesses that κ ∈ ADD ( I , Y ) (1) U ( g ) ∈ I for each g ∈ � A (2) If g 1 ≤ I g 2 then U ( g 1 ) ⊂ U ( g 2 ) . (3) � { U ( g α ) : α < κ } = Y . Soukup, L (HAS) RIMS 2010 11 / 23

  29. pcf ( A ) ⊂ ADD ( I , Y ) for countable A ⊂ ADD ( I , Y ) α : α < a } ⊂ I increasing � F a = Y . For a ∈ A let F a = { F a Let κ ∈ pcf ( A ) . Fix an ultrafilter U on A such that cf ( � A / U ) = κ Let { g α : α < κ } ⊂ � A be ≤ U -increasing, ≤ U -cofinal sequence. For g ∈ � A let U ( g )= � x ∈ I : { a ∈ A : x ∈ F a � g ( a ) } ∈ U . � U ( g α ) : α < κ � witnesses that κ ∈ ADD ( I , Y ) (1) U ( g ) ∈ I for each g ∈ � A (2) If g 1 ≤ I g 2 then U ( g 1 ) ⊂ U ( g 2 ) . (3) � { U ( g α ) : α < κ } = Y . Does A ⊂ ADD ( I ) imply pcf ( A ) ⊂ ADD ( I ) ? What happens if | A | = ω ? Soukup, L (HAS) RIMS 2010 11 / 23

  30. The ideals B and N : restrictions Soukup, L (HAS) RIMS 2010 12 / 23

  31. The ideals B and N : restrictions Theorem If A ⊂ ADD ( N ) is countable, then pcf ( A ) ⊂ ADD ( N ) . Soukup, L (HAS) RIMS 2010 12 / 23

  32. The ideals B and N : restrictions Theorem If A ⊂ ADD ( N ) is countable, then pcf ( A ) ⊂ ADD ( N ) . Problem: What about M ? Soukup, L (HAS) RIMS 2010 12 / 23

  33. The ideals B and N : restrictions Theorem If A ⊂ ADD ( N ) is countable, then pcf ( A ) ⊂ ADD ( N ) . Problem: What about M ? If κ n ∈ ADD ( N , Y n ) for n ∈ ω then { κ n : n < ω } ⊂ ADD ( N , Y ) for some Y ∈ N + . Soukup, L (HAS) RIMS 2010 12 / 23

  34. The ideals B and N : restrictions Theorem If A ⊂ ADD ( N ) is countable, then pcf ( A ) ⊂ ADD ( N ) . Problem: What about M ? If κ n ∈ ADD ( N , Y n ) for n ∈ ω then { κ n : n < ω } ⊂ ADD ( N , Y ) for some Y ∈ N + . Problem: Given κ n ∈ ADD ( M , Y n ) for n ∈ ω then find Y ∈ M + s.t. { κ n : n < ω } ⊂ ADD ( M , Y ) . Soukup, L (HAS) RIMS 2010 12 / 23

  35. The ideals B and N : restrictions Theorem If A ⊂ ADD ( N ) is countable, then pcf ( A ) ⊂ ADD ( N ) . Problem: What about M ? If κ n ∈ ADD ( N , Y n ) for n ∈ ω then { κ n : n < ω } ⊂ ADD ( N , Y ) for some Y ∈ N + . Problem: Given κ n ∈ ADD ( M , Y n ) for n ∈ ω then find Y ∈ M + s.t. { κ n : n < ω } ⊂ ADD ( M , Y ) . B is the σ -ideal generated by the compact subsets of the irrationals. Soukup, L (HAS) RIMS 2010 12 / 23

  36. The ideals B and N : restrictions Theorem If A ⊂ ADD ( N ) is countable, then pcf ( A ) ⊂ ADD ( N ) . Problem: What about M ? If κ n ∈ ADD ( N , Y n ) for n ∈ ω then { κ n : n < ω } ⊂ ADD ( N , Y ) for some Y ∈ N + . Problem: Given κ n ∈ ADD ( M , Y n ) for n ∈ ω then find Y ∈ M + s.t. { κ n : n < ω } ⊂ ADD ( M , Y ) . B is the σ -ideal generated by the compact subsets of the irrationals. Theorem If A ⊂ ADD ( B ) is progressive and | A | < h , then pcf ( A ) ⊂ ADD ( B ) . Soukup, L (HAS) RIMS 2010 12 / 23

  37. The ideals B and N : construction Soukup, L (HAS) RIMS 2010 13 / 23

  38. The ideals B and N : construction Theorem Assume that I is one of the ideals B , M and N . Soukup, L (HAS) RIMS 2010 13 / 23

  39. The ideals B and N : construction Theorem Assume that I is one of the ideals B , M and N . If A = pcf ( A ) is a non-empty set of uncountable regular cardinals, | A | < min ( A ) + n for some n ∈ ω , then A = ADD ( I ) in some c.c.c generic extension V P . Soukup, L (HAS) RIMS 2010 13 / 23

  40. The ideals B and N : construction Theorem Assume that I is one of the ideals B , M and N . If A = pcf ( A ) is a non-empty set of uncountable regular cardinals, | A | < min ( A ) + n for some n ∈ ω , then A = ADD ( I ) in some c.c.c generic extension V P . If ∅ � = Y ⊂ pcf ( {ℵ n : 1 ≤ n < ω } ) then pcf ( Y ) = ADD ( I ) in some c.c.c generic extension V P . Soukup, L (HAS) RIMS 2010 13 / 23

  41. The ideals B and N : construction Theorem Assume that I is one of the ideals B , M and N . If A = pcf ( A ) is a non-empty set of uncountable regular cardinals, | A | < min ( A ) + n for some n ∈ ω , then A = ADD ( I ) in some c.c.c generic extension V P . If ∅ � = Y ⊂ pcf ( {ℵ n : 1 ≤ n < ω } ) then pcf ( Y ) = ADD ( I ) in some c.c.c generic extension V P . If ℵ ω + 1 < max pcf ( {ℵ n : 1 ≤ n < ω } ) then there is an infinite Y ⊂ {ℵ n : 1 ≤ n < ω } such that ADD ( I ) = Y ∪ {ℵ ω + 2 } in some c.c.c generic extension V P . Soukup, L (HAS) RIMS 2010 13 / 23

  42. The ideals B and N : construction Theorem: Assume that I is one of the ideals B , M and N . If A = pcf ( A ) is a non-empty set of uncountable regular cardinals, | A | < min ( A ) + n for some n ∈ ω , then A = ADD ( I ) in some c.c.c generic extension V P . Soukup, L (HAS) RIMS 2010 14 / 23

  43. The ideals B and N : construction Theorem: Assume that I is one of the ideals B , M and N . If A = pcf ( A ) is a non-empty set of uncountable regular cardinals, | A | < min ( A ) + n for some n ∈ ω , then A = ADD ( I ) in some c.c.c generic extension V P . The ideals B , M and N have the Hechler property Soukup, L (HAS) RIMS 2010 14 / 23

  44. The ideals B and N : construction Theorem: Assume that I is one of the ideals B , M and N . If A = pcf ( A ) is a non-empty set of uncountable regular cardinals, | A | < min ( A ) + n for some n ∈ ω , then A = ADD ( I ) in some c.c.c generic extension V P . The ideals B , M and N have the Hechler property I has the Hechler property iff given any σ -directed poset Q there is a c.c.c poset P such that V P | = a cofinal subset { I q : q ∈ Q } of �I , ⊂� is isomorphic to Q . Soukup, L (HAS) RIMS 2010 14 / 23

  45. Hechler property Hechler: B has the Hechler property, Soukup, L (HAS) RIMS 2010 15 / 23

  46. Hechler property Hechler: B has the Hechler property, Bartoszynski and Kada: M has the Hechler property, Soukup, L (HAS) RIMS 2010 15 / 23

  47. Hechler property Hechler: B has the Hechler property, Bartoszynski and Kada: M has the Hechler property, Burke and Kada: N has the Hechler property. Soukup, L (HAS) RIMS 2010 15 / 23

  48. Hechler property Hechler: B has the Hechler property, Bartoszynski and Kada: M has the Hechler property, Burke and Kada: N has the Hechler property. Hechler: � ω ω , ≤ ∗ � has the Hechler property, Soukup, L (HAS) RIMS 2010 15 / 23

  49. Hechler property Hechler: B has the Hechler property, Bartoszynski and Kada: M has the Hechler property, Burke and Kada: N has the Hechler property. Hechler: � ω ω , ≤ ∗ � has the Hechler property, Define map Φ : � ω ω , ≤ ∗ � → B by the formula Φ( b ) = { x : x ≤ ∗ b } Soukup, L (HAS) RIMS 2010 15 / 23

  50. Hechler property Hechler: B has the Hechler property, Bartoszynski and Kada: M has the Hechler property, Burke and Kada: N has the Hechler property. Hechler: � ω ω , ≤ ∗ � has the Hechler property, Define map Φ : � ω ω , ≤ ∗ � → B by the formula Φ( b ) = { x : x ≤ ∗ b } Φ is a natural, cofinal, order preserving embedding. Soukup, L (HAS) RIMS 2010 15 / 23

  51. How to obtain a model of A = ADD ( I ) ? Soukup, L (HAS) RIMS 2010 16 / 23

  52. How to obtain a model of A = ADD ( I ) ? A = pcf ( A ) , | A | < min ( A ) + n Soukup, L (HAS) RIMS 2010 16 / 23

  53. How to obtain a model of A = ADD ( I ) ? A = pcf ( A ) , | A | < min ( A ) + n Q = � � A , ≤� . Soukup, L (HAS) RIMS 2010 16 / 23

  54. How to obtain a model of A = ADD ( I ) ? A = pcf ( A ) , | A | < min ( A ) + n Q = � � A , ≤� . I has the Hechler property: f : � Q , ≤� ֒ → �I , ⊂� Soukup, L (HAS) RIMS 2010 16 / 23

  55. How to obtain a model of A = ADD ( I ) ? A = pcf ( A ) , | A | < min ( A ) + n Q = � � A , ≤� . I has the Hechler property: f : � Q , ≤� ֒ → �I , ⊂� A ⊂ ADD ( I ) is easy Soukup, L (HAS) RIMS 2010 16 / 23

  56. How to obtain a model of A = ADD ( I ) ? A = pcf ( A ) , | A | < min ( A ) + n Q = � � A , ≤� . I has the Hechler property: f : � Q , ≤� ֒ → �I , ⊂� A ⊂ ADD ( I ) is easy Need: λ / ∈ A then λ / ∈ ADD ( I ) Soukup, L (HAS) RIMS 2010 16 / 23

  57. How to obtain a model of A = ADD ( I ) ? A = pcf ( A ) , | A | < min ( A ) + n Q = � � A , ≤� . I has the Hechler property: f : � Q , ≤� ֒ → �I , ⊂� A ⊂ ADD ( I ) is easy Need: λ / ∈ A then λ / ∈ ADD ( I ) Key observation: If B = pcf ( B ) is a progressive set of regular cardinals , λ / ∈ B , then for each { f i : i < λ } ⊂ � B there is g ∈ � B such that |{ i : f i ≤ g }| = λ . Soukup, L (HAS) RIMS 2010 16 / 23

  58. The ideals B and N Soukup, L (HAS) RIMS 2010 17 / 23

  59. The ideals B and N Theorem Assume that I = B or I = N . Given a nonempty, countable subset A of uncountable regular cardinals, T.F .A.E Soukup, L (HAS) RIMS 2010 17 / 23

  60. The ideals B and N Theorem Assume that I = B or I = N . Given a nonempty, countable subset A of uncountable regular cardinals, T.F .A.E A = pcf ( A ) Soukup, L (HAS) RIMS 2010 17 / 23

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend