lambda n and sigma n interactions from 2 1 lattice qcd
play

Lambda-N and Sigma-N interactions from 2+1 lattice QCD with almost - PowerPoint PPT Presentation

Lambda-N and Sigma-N interactions from 2+1 lattice QCD with almost realistic masses H. Nemura 1 , for HAL QCD Collaboration S. Aoki 2 , T. Doi 3 , F. Etminan 4 , S. Gongyo 5 , T. Hatsuda 3 , Y. Ikeda 6 , T. Inoue 7 , T. Iritani 8 , N. Ishii 6 , D.


  1. Lambda-N and Sigma-N interactions from 2+1 lattice QCD with almost realistic masses H. Nemura 1 , for HAL QCD Collaboration S. Aoki 2 , T. Doi 3 , F. Etminan 4 , S. Gongyo 5 , T. Hatsuda 3 , Y. Ikeda 6 , T. Inoue 7 , T. Iritani 8 , N. Ishii 6 , D. Kawai 2 , T. Miyamoto 2 , K. Murano 6 , and K. Sasaki 2 , 1 University of Tsukuba, 2 Kyoto University, 3 RIKEN, 4 University of Birjand, 5 University of Tours, 6 Osaka University, 7 Nihon University, 8 Stony Brook University

  2. Outline  Introduction  Brief introduction of HAL QCD method  Importance of LN-SN tensor force for hypernuclei  Effective block algorithm for various baryon- baryon channels, HN, Comput.Phys.Commun.207,91(2016) [arXiv:1510.00903(hep-lat)]  Preliminary results of LN-SN potentials at nearly physical point  LN-SN(I=1/2), central and tensor potentials  SN(I=3/2), central and tensor potentials  Summary

  3. Plan of research QCD J-PARC, JLab, GSI, MAMI, ... Baryon interaction YN scattering, hypernuclei Structure and reaction of (hyper)nuclei Equation of State (EoS) of nuclear matter A = 3 A = 4 A = 5 Neutron star and pnn  , pn  ppnn  supernova ppn 

  4. What is realistic picture of hypernuclei?  B (total)= B ( 4 He)+ B Λ ( Λ 5 He)  A conventional picture: B (total) = B ( 4 He)+ B Λ ( Λ 5 He) = 28+3 MeV.  A (probably realistic) picture: B (total) = ( B ( 4 He) −∆ E c )+( B Λ ( Λ 5 He)+ ∆ E c ) = ??+?? MeV.

  5. Comparison between d=p+n and core+Y 3 S 3 D L =0 L =2 p n p n α ' α Λ Σ  Phase shif 〈 T S 〉 〈 T D 〉 〈 V NN (central) 〉 〈 V NN (tensor) 〉 〈 V NN (LS) 〉 (MeV) (MeV) (MeV) (MeV) (MeV)  ( なるか ?) AV8 8.57 11.31 − 4.46 − 16.64 − 1.02 G3RS 10.84 5.64 − 7.29 − 11.46 0.00  〈 V YN ( のこり ) 〉 〈 T Y -c 〉 Λ 〈 T Y -c 〉 Σ + ∆ 〈 H c 〉 2 〈 V Λ N- Σ N (tensor) 〉 5 He 9.11 3.88+4.68 − 0.86 − 19.51 Λ 4 H * 0.01 5.30 2.43+2.02 − 10.67 Λ 4 H 7.12 2.94+2.16 − 5.05 − 9.22 Λ HN, Akaishi, Suzuki, PRL89, 142504 (2002).

  6. Rearrangement effect of Λ 5 He HN, Akaishi, Suzuki, PRL89, 142504 (2002).  Phase shif  Carlson  Nogga   ( なるか ?)    m i c 2 m i  − T C M  ∑ 2 A A − 1 A − 1 2  p i H = ∑  N N   ∑  N Y  = H core  H Y − core , v i v i j Y i = 1 i  j i = 1 −  ∑ p i  2 A − 1 2 A − 1 A − 1 p i H core = ∑ i = 1  ∑  N N  = T core  V N N . v i j 2 m N 2  A − 1  m N i = 1 i  j

  7. What is realistic picture of hypernuclei?  B (total)= B ( 4 He)+ B Λ ( Λ 5 He)  A conventional picture: B (total) = B ( 4 He)+ B Λ ( Λ 5 He) = 28+3 MeV.  A (probably realistic) picture: B (total) = ( B ( 4 He) −∆ E c )+( B Λ ( Λ 5 He)+ ∆ E c ) = 24+7 MeV.

  8. Lattice QCD calculation p n

  9. Multi-hadron on lattice i) basic procedure: asymptotic region --> phase shift ii) HAL's procedure: interacting region --> potential

  10. Formulation Lattice QCD simulation L =− 1 a G a A  a   a  q − m    i ∂  − g t 4 G  q  q q q ,q ,U 〉= ∫ dU d  − S  q,q,U  O  〈 O  q dq e q ,q ,U  = ∫ dU det D  U  e − S U  U  O  D − 1  U  N 1 N ∑ − 1  U i  O  D = lim N  ∞ i = 1  t   t 0 〉 p 〈 p p

  11. Formulation Lattice QCD simulation L =− 1 a G a A  a   a  q − m    i ∂  − g t 4 G  q  q q q ,q ,U 〉= ∫ dU d  − S  q,q,U  O  〈 O  q dq e q ,q ,U  = ∫ dU det D  U  e − S U  U  O  D − 1  U  N 1 N ∑ − 1  U i  O  D = lim N  ∞ i = 1  t   t 0 〉 pn 〈 pn pn

  12. Multi-hadron on lattice Lattice QCD simulation L =− 1 a G a A  a   a  q − m    i ∂  − g t 4 G  q  q q q ,q ,U 〉= ∫ dU d  − S  q,q,U  O  〈 O  q dq e q ,q ,U  = ∫ dU det D  U  e − S U  U  O  D − 1  U  N 1 N ∑ − 1  U i  O  D = lim N  ∞ i = 1  t   t 0 〉 p  〈 p  p 

  13. Multi-hadron on lattice i) basic procedure: asymptotic region (or temporal correlation) --> scattering energy 2 E = k --> phase shift 2  2 2 = 1 2  k c o t  0  k = Z 00  1 ;  k L / 2   O  k   L a 0 1 1 ℜ s  3  4  ∑ 2 = Z 00  1 ;q 2 − q 2  s  n 2 3 n ∈ Z  Luscher, NPB354, 531 (1991). Aoki, et al., PRD71, 094504 (2005).

  14. Multi-hadron on lattice i) basic procedure: An example of asymptotic region Luscher’s formula (or temporal correlation) --> scattering energy 2 E = k --> phase shift 2  2 2 = 1 2  k c o t  0  k = Z 00  1 ;  k L / 2   O  k   L a 0 1 1 ℜ s  3  4  ∑ 2 = Z 00  1 ;q 2 − q 2  s  n 2 3 n ∈ Z  Luscher, NPB354, 531 (1991). Aoki, et al., PRD71, 094504 (2005).

  15. Multi-hadron on lattice Lattice QCD simulation L =− 1 a G a A  a   a  q − m    i ∂  − g t 4 G  q  q q q ,q ,U 〉= ∫ dU d  − S  q,q,U  O  〈 O  q dq e q ,q ,U  = ∫ dU det D  U  e − S U  U  O  D − 1  U   JM   F  r,t − t 0  , N 1 N ∑ − 1  U i  O  D = lim N  ∞ i = 1 r ,t   t 0 〉  〈  p  p  Calculate the scattering state

  16. Multi-hadron on lattice ii) HAL’s procedure: make better use of the lattice output ! (wave function) interacting region --> potential Ishii, Aoki, Hatsuda, PRL99, 022001 (2007); ibid., PTP123, 89 (2010). NOTE: > Potential is not a direct experimental observable. > Potential is a useful tool to give (and to reproduce) the physical quantities. (e.g., phase shift) ....

  17. Multi-hadron on lattice ii) HAL’s procedure: make better use of the lattice output ! (wave function) interacting region --> potential Ishii, Aoki, Hatsuda, PRL99, 022001 (2007); ibid., PTP123, 89 (2010). => > Phase shift > Nuclear many-body problems

  18. The potential is obtained at moderately large imaginary time; no single state saturation is required.

  19. The potential is obtained at moderately large imaginary time; no single state saturation is required.

  20. The potential is obtained at moderately large imaginary time; no single state saturation is required.

  21. An improved recipe for NY potential:  cf. Ishii (HAL QCD), PLB712 (2012) 437.  Take account of not only the spatial correla- tion but also the temporal correlation in terms of the R-correlator: − 1 r ' =− ∂ 3 r ' U  r '  R  t,  r  ∫ d 2 R  t,  r,  ∂ t R  t,  r  2  ∇ 2  k 2  R  t ,  r  U  r,  r' = V N Y  r, ∇ r − r'   A general expression of the potential: V N Y = V 0  r  V   r   N ⋅  Y   V T  r  S 12  V LS  r  L ⋅ S    V ALS  r  L ⋅ 2  S −  O ∇

  22. Determination of baryon-baryon potentials at nearly physical point

  23. Effective block algorithm for various baryon-baryon correlators HN, CPC207,91(2016), arXiv:1510.00903(hep-lat) Numerical cost (# of iterative operations) in this algorithm 2 N  2 N  2 N   N c 2 N  = 370 2  N c 2  N c 2  N c 1  N c In an intermediate step: B × N u ! N d ! N s ! × 2 N   N  0 − B = 3456  N c ! N   In a naïve approach: 2B × N u ! N d ! N s ! = 3,981,312  N c ! N  

  24. Generalization to the various baryon-baryon channels strangeness S=0 to -4 systems Make better use of the computing resources! HN, CPC 207, 91(2016) [arXiv:1510.00903[hep-lat]], (See also arXiv:1604.08346)

  25. Almost physical point lattice QCD calculation using N F =2+1 clover fermion + Iwasaki gauge action  APE-Stout smearing ( ρ =0.1, n stout =6)  Non-perturbatively O(a) improved Wilson Clover action at β =1.82 on 96 3 × 96 lattice  1/ a = 2.3 GeV ( a = 0.085 fm)  Volume: 96 4 → (8fm) 4  m π =145MeV, m K =525MeV  DDHMC(ud) and UVPHMC(s) with preconditioning  K.-I.Ishikawa, et al., PoS LAT2015, 075; arXiv:1511.09222 [hep-lat].  NBS wf is measured using wall quark source with Coulomb gauge fixing, spatial PBD and temporal DBC; #stat=207configs x 4rotation x Nsrc (Nsrc=4 → 20 → 52 → 96 (2015FY+))

  26. LN-SN potentials at nearly physical point The methodology for coupled-channel V is based on: Aoki, et al., Proc.Japan Acad. B87 (2011) 509. Sasaki, et al., PTEP 2015 (2015) no.11, 113B01. Ishii, et al., JPS meeting, March (2016). #stat: (this/scheduled in FY2015+) < 0.05 (==>0.2) 0.54  N − N  I = 1 / 2  1 S 0  3 S 1 − 3 D 1  3 S 1 − 3 D 1  V C  V C  V T   N  I = 3 / 2  1 S 0  3 S 1 − 3 D 1  3 S 1 − 3 D 1  V C  V C  V T 

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend