lagrangians for non lagrangian theories
play

Lagrangians for non-Lagrangian theories Jaewon Song (KIAS) in - PowerPoint PPT Presentation

Lagrangians for non-Lagrangian theories Jaewon Song (KIAS) in collaboration with Prarit Agarwal (SNU), Kazunobu Maruyoshi (Seikei), Emily Nardoni (UCSD), Antonio Sciarappa (KIAS) 1606.05632, 1607.04281,


  1. 
 ‘Lagrangians’ for 
 ‘non-Lagrangian’ theories Jaewon Song 
 (KIAS) in collaboration with 
 Prarit Agarwal (SNU), Kazunobu Maruyoshi (Seikei), 
 Emily Nardoni (UCSD), Antonio Sciarappa (KIAS) 
 1606.05632, 1607.04281, 1610.05311, 1707.04751, 1711.xxxxx @KEK - Nov. 13, 2017

  2. What is the simplest interacting 4d N=2 SCFT?

  3. Argyres-Douglas theory • Originally discovered by looking at a special point in the Coulomb branch of N=2 SU(3) SYM or N=2 SU(2) SQCD. [Argyres-Douglas ’95] [Argyres-Plesser-Seiberg-Witten ‘95] • At this special point, mutually non-local electromagnetically charged particles become massless. • It is a strongly-coupled N=2 SCFT with no tunable coupling. “ non-Lagrangian theory ” • Its Coulomb phase is well-understood, but the conformal phase is rather poorly-understood.

  4. H 0 AD theory • There is a chiral operator of dimension 6/5 parametrizing the Coulomb branch. a = 43 c = 11 • Central charges: [Shapere-Tachikawa ‘08] 120 , 30 • The central charge c above is the minimal value of any interacting N=2 SCFT! [Liendo-Ramirez-Seo ‘15] 
 c ≥ 11 30 • The 2d chiral algebra corresponding to the AD theory is given by a non-unitary Virasoro minimal model. [Beem-Lemos-Liendo-Rastelli-van Rees ’13] 
 [Cordova-Shao ’15]

  5. Is it possible to write a Lagrangian for the ‘simplest 4d N=2 SCFT’?

  6. Is it possible to write a Lagrangian for the ‘simplest 4d N=2 SCFT’? ‣ It has been a long-standing problem to write a Lagrangian for the QED with electron and monopole.

  7. Is it possible to write a Lagrangian for the ‘simplest 4d N=2 SCFT’? ‣ It has been a long-standing problem to write a Lagrangian for the QED with electron and monopole. ‣ Not possible if you want N=2 SUSY manifest.. 
 eg) No way to get dim=6/5 Coulomb branch operator.

  8. Is it possible to write a Lagrangian for the ‘simplest 4d N=2 SCFT’? ‣ It has been a long-standing problem to write a Lagrangian for the QED with electron and monopole. ‣ Not possible if you want N=2 SUSY manifest.. 
 eg) No way to get dim=6/5 Coulomb branch operator. ‣ Sometimes, sacrificing manifest symmetry can help. 
 eg) ABJM theory, N=(4, 4) sigma model on K3.

  9. N=1 gauge theory flowing to the H 0 =(A 1 , A 2 ) SCFT q q’ M X ϕ Matter content SU(2) 2 2 adj 1 1 W = φ qq + M φ q 0 q 0 + X φ 2 Superpotential This theory has an anomaly free U(1) global symmetry that can be mixed with R-symmetry. (R-charges are not fixed)

  10. 
 a-maximization [Intriligator-Wecht ‘03] • UV R-symmetry may not be the same as the IR R-symmetry when there is a non-baryonic U(1) symmetry. X R IR = R UV + ✏ i F i i • The exact R-charge at the fixed point is determined by maximizing the trial a-function, which is given in terms of the U(1) R ’t Hooft anomalies: 
 [Anselmi-Freedman-Grisaru-Johansen ‘97] a ( ✏ ) = 3 32(3Tr R 3 ✏ − Tr R ✏ ) • Upon determining exact R-charge, we can determine the operator dimension via Δ = 3/2 R.

  11. RG Flow to the H 0 theory W = g Tr φ qq + g 0 M Tr φ q 0 q 0 + λ X Tr φ 2 Adjoint SQCD SU(2), Nf=1 g’ H 0 C Tr ϕ 2 decouples N=1 fixed point W=0 fixed point g A a = 43 c = 11 ∆ ( M ) = 6 @C, we get: 120 , 30 5 Agrees with that of the Argyres-Douglas theory!

  12. N=1 Lagrangian for the 
 N=2 AD theory H 0 =(A 1 , A 2 ) • This enables us to compute the full superconformal index of the AD theory and compare against the simplification limits computed in [Cordova-Shao][JS] . • Pseudomoduli parametrized by X gets lifted via dynamically generated superpotential. • Coulomb branch emerges in the IR, parametrized via a vev of the singlet field M, not Tr ϕ 2 . • Can further deform to a ‘simple N=1 SCFT’ via giving a mass to M. We tested the claims of [Xie-Yonekura][Buican-Nishinaka].

  13. N=1 gauge theory flowing to the H 1 =(A 1 , A 3 ) theory q q’ M X ϕ • Matter contents: SU(2) 2 2 adj 1 1 • Interaction: W = Mqq 0 + X φ 2 This theory has a SU(2)xU(1) global symmetry. The U(1) symmetry can be mixed with R-symmetry. a = 11 c = 1 ∆ ( M ) = 4 @IR, we get: 24 , 2 , 3

  14. Where are these ‘Lagrangians’ coming from? 
 Is there any organizing principle?

  15. N=1 Deformations of N=2 SCFT with global symmetry • Consider an N=2 SCFT T UV with non-abelian global symmetry. • For an N=2 SCFT with global symmetry F it has a moment map operator μ transforms as the adjoint of F. • Add a chiral multiplet M transforming as the adjoint of F and the following superpotential: 
 W = Tr( Mµ ) • SU(2)xU(1) R-symmetry broken to U(1) R xU(1) F

  16. N=1 Deformation 
 - Nilpotent Higgsing • Now, we give a nilpotent vev to M. [Gadde-Maruyoshi-Tachikawa-Yan] • The deformation triggers a flow to a new N=1 SCFT T IR [ T UV , ρ ]. 
 T UV T IR [ T UV , ⇢ ] • Nilpotent elements are classified by the SU(2) embeddings 
 ρ : SU(2) → F. 
 h M i = ρ ( σ + ) • Commutant becomes the global symmetry of the IR SCFT. • It preserves the U(1) F symmetry that can be mixed with R- symmetry.

  17. Nilpotent Higgsing - Lagrangian theory • For a Lagrangian theory, giving a vev to M gives a nilpotent mass to the quarks. [Agarwal-Bah-Maruyoshi-JS] 
 [Agarwal-Intriligator-JS] • Massive quarks can be integrated out. • Some components of M remain coupled. • Write all possible superpotential terms consistent with the symmetry. (many of them are dangerously irrelevant)

  18. Results - Surprise! • Emergent N=2 supersymmetry: • For a number of cases, SUSY enhances to N=2 at the fixed point. • N=1 RG flows between (known) N=2 SCFTs N=1 SUSY N=2 SUSY

  19. Results - Surprise! • N=1 deformation of the Lagrangian N=2 SQCD flows to the “non-Lagrangian” Argyres-Douglas (AD) theory! • This enables us to compute the full superconformal indices of the AD theories. 
 cf) [Cordova-Shao][Buican-Nishinaka][JS][JS-Xie-Yan] • One can use this “Lagrangian description” to compute any RG invariant quantities. \

  20. Deformations of SU(N) N f =2N 4d N = 2 SUSY SU (2 N ) ⇢ : SU (2) , → SU (2 N ) a c [1 4 ] 23 7 Yes; N c = 2 , N f = 4 24 6 7 2 SU (4) [3 , 1] Yes; ( A 1 , D 4 ) AD th. Here we list some of 12 3 11 1 [4] Yes; ( A 1 , A 3 ) AD th. 24 2 the deformations that 
 29 17 [1 6 ] Yes; N c = 3 , N f = 6 12 6 gives rational central SU (6) 13 7 [5 , 1] Yes; ( A 1 , D 6 ) AD th. 12 6 11 23 [6] Yes; ( A 1 , A 5 ) AD th. charges. 12 24 107 31 [1 8 ] Yes; N c = 4 , N f = 8 24 6 [2 , 1 6 ] 73801 43121 ? 17424 8712 Those with “?" have 9097 5129 SU (8) [4 , 4] ? 3888 1944 19 5 N=1 SUSY. [Evtikhiev] [7 , 1] Yes; ( A 1 , D 8 ) AD th. 12 3 167 43 [8] Yes; ( A 1 , A 7 ) AD th. 120 30 [1 10 ] 247 71 Yes; N c = 5 , N f = 10 24 6 Other deformations 5553943 6257387 [5 , 1 5 ] ? 1383123 1383123 give irrational central SU (10) [5 , 3 , 1 2 ] 92540867 52091009 ? 24401712 12200856 25 13 [9 , 1] Yes; ( A 1 , D 10 ) AD th. charges, therefore they 12 6 15 23 [10] Yes; ( A 1 , A 9 ) AD th. 8 12 flow to N=1 theories. 247 71 [1 12 ] Yes; N c = 6 , N f = 12 24 6 [4 3 ] 754501 424727 ? 138384 69192 SU (12) 31 8 [11 , 1] Yes; ( A 1 , D 12 ) AD th. 12 3 397 101 [12] Yes; ( A 1 , A 11 ) AD th. 168 42

  21. Deforming Sp(N),4N+4 half-hypers SO (4 N + 4) ⇢ : SU (2) , → SU (4 N + 4) a c 4d N = 2 SUSY [1 8 ] 23 7 Yes; N c = 1 , N f = 8 24 6 [3 2 , 1 2 ] 7 2 ? 12 3 11 1 SO (8) [4 , 4] ≡ [5 , 1 3 ] Yes; ( A 1 , D 3 ) AD th. 24 2 6349 3523 [5 , 3] ? 13872 6936 43 11 [7 , 1] Yes; ( A 1 , A 2 ) AD th. 120 30 37 11 [1 12 ] Yes; N c = 2 , N f = 12 12 3 [4 2 , 2 2 ] 105027 61145 ? 59536 29768 SO (12) [9 , 1 3 ] 19 1 Yes; ( A 1 , D 5 ) AD th. 20 67 17 [11 , 1] Yes; ( A 1 , A 4 ) AD th. 84 21 [1 16 ] 51 15 Yes; N c = 3 , N f = 16 8 2 [5 , 1 11 ] 109031 123889 ? 27744 27744 18250741 10440877 SO (16) [5 , 3 3 , 1 2 ] ? 5195568 2597784 81 3 [13 , 1 3 ] Yes; ( A 1 , D 7 ) AD th. 56 2 91 23 [15 , 1] Yes; ( A 1 , A 6 ) AD th. 72 18 65 38 [1 20 ] Yes; N c = 4 , N f = 20 6 3 [2 2 , 1 16 ] 4181 2463 ? 400 200 [3 4 , 2 4 ] 29 133 ? 4 16 [4 4 , 2 2 ] 28361329 16338643 ? 4702512 2351256 737 817 SO (20) [9 , 5 , 3 , 1 3 ] ? 192 192 [11 , 1 9 ] 6638927 3700169 ? 1976856 988428 [11 , 2 2 , 1 5 ] 106413731 59339969 ? 31795224 15897612 [11 , 2 4 , 1] ≡ [11 , 3 , 1 6 ] 26650955 14869241 ? 7990296 3995148 106793099 59613689 [11 , 3 , 2 2 , 1 2 ] ? 32127576 16063788

  22. Deformations of SO(N) SQCD, 1/2 Nf=N-2 Sp ( N � 2) ⇢ : SU (2) , ! Sp ( N � 2) 4d N = 2 SUSY a c [1 4 ] 19 5 Yes; N c = 4 , N f = 4 12 3 Sp (2) 10111 5381 [2 , 1 2 ] ? 7056 3528 65 35 [1 6 ] Yes; N c = 5 , N f = 6 24 12 Sp (3) [4 , 1 2 ] 325 341 ? 192 192 33 9 Sp (4) [1 8 ] Yes; N c = 6 , N f = 8 8 2 35 77 No non-trivial 
 Sp (5) [1 10 ] Yes; N c = 7 , N f = 10 6 12 47 26 [1 12 ] Yes; N c = 8 , N f = 12 N=2 fixed point! 6 3 Sp (6) [2 2 , 1 8 ] 589093 329335 ? 80688 40344 13065 7085 [4 , 1 8 ] ? 2312 1156 [1 14 ] 81 45 Yes; N c = 9 , N f = 14 8 4 59094550 129141025 Sp (7) [5 2 , 1 4 ] ? 10978707 21957414 375975613 406255085 [6 , 3 2 , 2] ? 72745944 72745944 [1 16 ] 305 85 Yes; N c = 10 , N f = 16 24 6 389 53 [4 2 , 2 2 , 1 4 ] ? 48 6 Sp (8) [5 2 , 3 2 ] 30593927 16735805 ? 4642608 2321304 28118905 3828919 [5 2 , 4 , 1 2 ] ? 4348848 543606

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend