can one trust results from
play

Can One trust Results from Effective Lagrangians & Global Fits? - PowerPoint PPT Presentation

Improving Estimates for (g-2) : Can One trust Results from Effective Lagrangians & Global Fits? M. Benayoun LPNHE Paris 6/7 OUTLINE HVP Evaluations & Effective Lagrangians The HLS Model, its Breaking & Scope The


  1. Improving Estimates for (g-2) μ : Can One trust Results from Effective Lagrangians & Global Fits? M. Benayoun LPNHE Paris 6/7

  2. OUTLINE  HVP Evaluations & Effective Lagrangians  The HLS Model, its Breaking & Scope  The VMD Strategy for HVP Evaluations : Global Fits  Issues with the Global Fit Method  χ 2 : How to deal with spectrum scale uncertainties ?  An Iteration Method and its Monte Carlo Checking  Updated Global Fits to e + e - Annihilations  Updated Evaluations of NP Contributions to HVP  Updated Evaluations of the (g-2) µ Discrepancy  Conclusions 2

  3. HVP Estimates & Effective Lagrangians • Non Perturbative contributions to Hadronic VP : s cut 1       a ( H ) ds K ( s ) ( e e H s , ) Measured Xsection   i i 3 4 s th • Effective Lagrangians imply physics correlations       among the e e H i 1,..... i • EL cross-sections : fed through a global fit → ( param. values & error covariance matrix) : Measured Xsection Model Xsection 3

  4. NSK2:: Breaking the HLS Model The HLS Model & Breaking e + e - data handling framework : HLS Lagrangian M. Harada & K. Yamawaki Phys. Rep. 381 (2003) 1  equiped with two breaking schemes:  BKY mechanism : M.Bando et al . Nucl. Phys. B259 (1985) 493 (SU 2 & SU 3 brk) M.Benayoun et al . Phys. Rev. D58 (1998) 074006 M.Hashimoto Phys. Rev. D54 (1996) 5611  vector meson mixing : M.Benayoun et al . EPJ C55 (2008) 199 M.Benayoun et al . EPJ C65 (2010) 211 (s-dependent)  Latest Model Status : M.Benayoun et al . EPJ C72 (2012) 1848 4

  5. HLS : A Global VMD Model (I) • The (Broken) Hidden Local Symmetry (BHLS) model :  Unified VMD framework which encompasses e + e - → π π /KKbar / π γ / η γ / π π π & τ→ππ ν τ & PV γ , P γγ decays & η / η’  γπ π / γγ & …  BHLS :: (almost) an empty shell : [ α em , G F , f π , V ud , V us ,m π ’s, m K ’s , m η , , m η’ ]  Main Limitation :  Up to the ≈ φ mass region ( ≈ 1.05 GeV) 5

  6. HLS : A Global VMD Model (I) • The (Broken) Hidden Local Symmetry (BHLS) model :  Unified VMD framework which encompasses e + e - → π π /KKbar / π γ / η γ / π π π & τ→ππ ν τ & PV γ , P γγ decays & η / η’  γπ π / γγ & …  BHLS :: (almost) an empty shell : [ α em , G F , f π , V ud , V us ,m π ’s, m K ’s , m η , m η’ ]  Main Limitation :  Up to the ≈ φ mass region ( ≈ 1.05 GeV) 6

  7. HLS : A Global VMD Model (I) • The (Broken) Hidden Local Symmetry (BHLS) model :  Unified VMD framework which encompasses e + e - → π π /KKbar / π γ / η γ / π π π & τ→ππ ν τ & PV γ , P γγ decays & η / η’  γπ π / γγ & …  BHLS :: (almost) an empty shell : [ α em , G F , f π , V ud , V us ,m π ’s, m K ’s , m η , , m η’ ]  Main Limitation : M.Benayoun et al . EPJ C72 (2012) 1848  Up to the ≈ φ mass region ( ≈ 1.05 GeV) 7

  8. HLS : A Global VMD Model (II) • BHLS correlates several physics channels : e + e - → π π /KKbar / π γ / η γ / π π π & τ→ππ ν τ & PV γ , P γγ decays & φ→ππ (Br ratio and phase) 1. BHLS : overconstrained & numerically driven by more than 40 data sets 2. New paradigm : statistics on any channel ( π 0 γ , τ ) ≈ additional statistics for any other ( π + π - / η γ ) 3. All available exp. data sets about these channels are not necessarily consistent within BHLS 8

  9. VMD Strategy for HVP Estimates  Perform a global fit :: if successful then  1/ VMD correlations are fulfilled by DATA  2/ HLS form factors & fit parameters values & errors covariance matrix should lead to better estimates of HVP contributions to g-2 for   π + π - / / / π γ / η γ / η’ γ / π π π up to 1.05 GeV K K / K K L S 9

  10. VMD Strategy for HVP Estimates  Perform a global fit :: if successful then  1/ VMD correlations are fulfilled by DATA  2/ HLS form factors & fit parameters values & errors covariance matrix should lead to better estimates of HVP contributions to g-2 for   π + π - / / / π γ / η γ / η’ γ / π π π up to 1.05 GeV K K / K K L S 10

  11. Can One trust Global Fits? • Outcome of a Minimization Tool : χ 2 (& MINUIT) implemented using assumptions on : • Error Covariance Matrices (metrics of χ 2 distance) • Global Scale Uncertainties (possibly s-dependent) the • Th. models (Non-linear parameter dependence) Even if fits are 100% successful : check if numerical conclusions can be trusted

  12. How to Check Global Fits? • Several Expectations :  Parameter residuals OK : Unbiased  Parameter Pulls OK : Gaussians G(m=0, σ =1)  Probability distributions OK: Uniform on [0,1] • → Fit parameters values & Fit Error Cov. Matrix OK So : Any derived info. X 0 + Δ X (val./err.) OK BUT truth should be known → MC methods

  13. How to Check Global Fit Methods? • Several Expectations :  Parameter residuals OK : Unbiased  Parameter Pulls OK : Gaussians G(m=0, σ =1)  Probability distributions OK: Uniform on [0,1] • → Fit parameters values & Fit Error Cov. Matrix OK So : Any derived info. X 0 ± Δ X (val./err.) VALID BUT truth should be known → MC methods

  14. How to Check Global Fit Methods? • Several Expectations :  Parameter residuals OK : Unbiased  Parameter Pulls OK : Gaussians G(m=0, σ =1)  Probability distributions OK: Uniform on [0,1] • → Fit parameters values & Fit Error Cov. Matrix OK So : Any derived info. X 0 ± Δ X (val./err.) VALID BUT truth should be known → MC methods

  15. How to Check Global Fit Methods? • Several Expectations :  Fit parameter residuals OK : Unbiased  parameter Pulls OK : Gaussians G(m=0, σ =1)  Probability distributions OK: Uniform on [0,1] • → Fit parameters values & Fit Error Cov. Matrix OK So : Any derived info. X 0 ± Δ X (val./err.) VALID BUT truth should be known → MC methods

  16. χ 2 Function : Global Scale Issues • Spectrum ( E ) subject to one scale uncertainty λ E [G(0, σ )] and stat. err. cov. V E :           T       2 1 2 2 / m M A V m M A E E E E E E E model data Global scale « Penalty term » If no global scale : Stat. & uncorrel. syst         T  2 1 m M V m M E E E E what about A : Specific to E? Common to {E}?

  17. s-dependent Global Scale Factors • several independent scale factors (necessarily s- dependent) affect the spectrum (E) • The α th scale factor : λ α =µ α (0,1) σ α (s) • Define the vectors B α (s) = A(s) σ α (s) • then T              2 1 m M µ B V m M µ B µ µ            E E E E M.Benayoun et al . EPJ C73 (2013)2453 « Penalty term »

  18. Scale Uncertainty(ies) M. Benayoun et al EPJ C73 (2013)2453 • Minimize :           T       2 1 2 2 m M A V m M A / 2 / • Solving for λ ( ) leads to:      0      1      T    2 2 T m M V A A m M   the      1      / A V A    • with : T 1 T 1  A V m M  2 How to choose A ? How to check A ? 18

  19. NA7 Residuals ( χ 2 /N≈2)!    m M spacelike timelike      m M A M. Benayoun et al EPJ C73 (2013)2453 19

  20. NA7 Residuals ( χ 2 /N≈2)!    m M Spacelike & timelike spacelike timelike      m M A M. Benayoun et al EPJ C73 (2013)2453 20

  21. An Effect of Scale Uncertainty • Experimental quantity M ? m? or m- λ A ? • Contribution to HVP : ∫ K(s) M(s) =? ∫ K(s) m(s)

  22. An Effect of Scale Uncertainty • Experimental quantity M ? m? or m- λ A ? • Contribution to HVP : ∫ K(s) M(s) =? ∫ K(s) m(s) s cut 1       a ( H ) ds K ( s ) ( e e H s , )   i i 3 4 s th

  23. An Effect of Scale Uncertainty • Experimental quantity M ? m? or m- λ A ? • Contribution to HVP should be corrected ∫ K(s) M(s) = ∫ K(s) m(s) - λ ∫ K(s) A(s) • Correction Evaluation requires λ & A(s) → fits!

  24. An Effect of Scale Uncertainty • Experimental quantity M ? m? or m- λ A ? • Contribution to HVP should be corrected ∫ K(s) M(s) = ∫ K(s) m(s) - λ ∫ K(s) A(s) • Correction Evaluation requires λ & A(s) → but fits provide M(s) directly

  25. How to choose/check A? • The best choice is A= M truth G. D’ Agostini NIM A346 (1994)306 M truth is unknown ! • A= m may be not optimum: M.Benayoun et al . EPJ C73 (2013)2453 → biased(?) information → How to unbias? • A solution : Iterative Method R.D.Ball et al JHEP 1005 (2010)075 iteration 0 : A= m → it=0 fit. func. : M 0 iteration 1 : A= M 0 → it=1 fit. func. : M 1 ETC….. up to convergence M n = M truth the  Also A=M (varying) if some good starting point

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend