kolmogorov equations and weak order analysis for spdes
play

Kolmogorov equations and weak order analysis for SPDEs with - PowerPoint PPT Presentation

Kolmogorov equations and weak order analysis for SPDEs with multiplicative noise Charles-Edouard Brhier Joint work with Arnaud Debussche (ENS Rennes) CNRS & Universit Lyon 1, Institut Camille Jordan C-E Brhier Multiplicative noise


  1. Kolmogorov equations and weak order analysis for SPDEs with multiplicative noise Charles-Edouard Bréhier Joint work with Arnaud Debussche (ENS Rennes) CNRS & Université Lyon 1, Institut Camille Jordan C-E Bréhier Multiplicative noise SPDEs: weak rates 1 / 21

  2. Plan of the talk Model, assumptions and results 1 SPDEs with non constant diffusion coefficient Numerical scheme Weak convergence result Study of the Kolmogorov equation 2 The Kolmogorov equation Basic regularity estimates Improved estimates: strategy C-E Bréhier Multiplicative noise SPDEs: weak rates 2 / 21

  3. Model and assumptions Parabolic, semilinear, SPDE: t ≥ 0, z ∈ ( 0 , 1 ) � � = ∂ 2 x ( t , z ) f 2 ( x ( t , z )) ∂ x ( t , z ) + ∂ � � � � + f 1 x ( t , z ) + σ x ( t , z ) ξ ( t , z ) ∂ t ∂ z 2 ∂ z driven by space-time white noise ξ ( t , z ) . Boundary conditions: x ( t , 0 ) = x ( t , 1 ) = 0 (Dirichlet). Initial condition: x ( 0 , · ) = x 0 . Coefficients f 1 , f 2 and σ are smooth, bounded and Lipschitz continuous. In the drift: Burgers type nonlinearity. Multiplicative noise: diffusion coefficient is not constant C-E Bréhier Multiplicative noise SPDEs: weak rates 3 / 21

  4. Stochastic evolution equation formulation Formulation: in the Da Prato-Zabczyk framework, X ( t ) = X ( t , · ) ∈ H = L 2 ( 0 , 1 ) dX ( t ) = AX ( t ) dt + G ( X ( t )) dt + σ ( X ( t )) dW ( t ) , with A : D ( A ) → H unbounded, self-adjoint linear operator √ 2 sin ( n π · ) and λ n = − n 2 π 2 ; Ae n = − λ n e n , where e n ( · ) = G = F 1 + BF 2 and σ : H → L ( H ) are Nemytskii coefficients. W is a cylindrical Wiener process: � W ( t ) = β n ( t ) e n . n ∈ N where β n are independent standard Wiener processes, for n ∈ N . C-E Bréhier Multiplicative noise SPDEs: weak rates 4 / 21

  5. Well-posedness The equation dX ( t ) = AX ( t ) dt + G ( X ( t )) dt + σ ( X ( t )) dW ( t ) admits a unique, global, mild solution: for all t ≥ 0 � t � t X ( t ) = e tA x 0 + e ( t − s ) A � e ( t − s ) A σ ( X ( s )) dW ( s ) � F 1 ( X ( s ) + BF 2 ( X ( s )) ds + 0 0 where e tA x = � n ∈ N e − t λ n � x , e n � e n is the semi-group associated with A . C-E Bréhier Multiplicative noise SPDEs: weak rates 5 / 21

  6. Well-posedness The equation dX ( t ) = AX ( t ) dt + G ( X ( t )) dt + σ ( X ( t )) dW ( t ) admits a unique, global, mild solution: for all t ≥ 0 � t � t X ( t ) = e tA x 0 + e ( t − s ) A � e ( t − s ) A σ ( X ( s )) dW ( s ) � F 1 ( X ( s ) + BF 2 ( X ( s )) ds + 0 0 where e tA x = � n ∈ N e − t λ n � x , e n � e n is the semi-group associated with A . Regularization by the semi-group: for every α ∈ [ 0 , 1 ) � � e tA h � H ≤ C α t − α | h | − α . � n = 1 λ − 2 α with | h | 2 − α = � ∞ |� h , e n �| 2 . n C-E Bréhier Multiplicative noise SPDEs: weak rates 5 / 21

  7. Temporal discretization Discretization of dX ( t ) = AX ( t ) dt + G ( X ( t )) dt + σ ( X ( t )) dW ( t ) : linear-implicit Euler scheme X ∆ t n + 1 = X ∆ t + ∆ tAX ∆ t n + 1 + ∆ tG ( X ∆ t n ) + σ ( X ∆ t n )∆ W ∆ t n n = S ∆ t X ∆ t + ∆ tS ∆ t G ( X ∆ t n ) + S ∆ t σ ( X ∆ t n )∆ W ∆ t n n with S ∆ t = ( I − ∆ tA ) − 1 , T = N ∆ t , X ∆ t = x 0 , 0 ∆ W ∆ t � � = W ( n + 1 )∆ t − W ( n ∆ t ) . n Strong order of convergence is 1 4 : 1 � ≤ C κ ( T , x 0 )∆ t � � X ( N ∆ t ) − X ∆ t � 4 − κ . E N where C κ ( T , x 0 ) ∈ ( 0 , ∞ ) , for all κ ∈ ( 0 , 1 4 ) . C-E Bréhier Multiplicative noise SPDEs: weak rates 6 / 21

  8. Main result: weak order 1 2 Consider real-valued test functions ϕ , with C 3 regularity, and derivatives controlled in the following sense: for some p , q ∈ [ 2 , ∞ ) � ≤ C ( 1 + | x | L p ) K | h 1 | L q . . . | h n | L q . � �� � D n ϕ ( x ) . � h 1 , . . . , h n � 1 Example: ϕ ( x ) = 0 φ ( x ( z )) dz . Theorem (B.-Debussche) For such test functions ϕ , for every T ∈ ( 0 , ∞ ) , and every κ ∈ ( 0 , 1 2 ) , there exists C κ ( T , ϕ ) ∈ ( 0 , ∞ ) such that � �� 1 X ∆ t 2 − κ . � � � X ( N ∆ t ) − E ϕ � ≤ C κ ( T , ϕ ) P ( x 0 )∆ t � E ϕ � � N Preprint 2017 Kolmogorov Equations and Weak Order Analysis for SPDES with Nonlinear Diffusion Coefficient. C-E Bréhier Multiplicative noise SPDEs: weak rates 7 / 21

  9. Comparison with previous results Approaches in the literature (not exhaustive): Kolmogorov equation: SDEs: Talay, Tubaro, Milstein, Bally, Tretyakov, Kloeden, Platen, . . . SPDEs: Debussche, Larsson, Kovacs, Andersson, Printems, Wang, . . . mild Itô calculus: Jentzen, Conus, Kurniawan, Cox, . . . Malliavin calculus: SDEs: Clément, Kohatsu-Higa, Lamberton SPDEs: Andersson, Larsson, Kruse; Lindner C-E Bréhier Multiplicative noise SPDEs: weak rates 8 / 21

  10. Comparison with previous results Approaches in the literature (not exhaustive): Kolmogorov equation: SDEs: Talay, Tubaro, Milstein, Bally, Tretyakov, Kloeden, Platen, . . . SPDEs: Debussche, Larsson, Kovacs, Andersson, Printems, Wang, . . . mild Itô calculus: Jentzen, Conus, Kurniawan, Cox, . . . Malliavin calculus: SDEs: Clément, Kohatsu-Higa, Lamberton SPDEs: Andersson, Larsson, Kruse; Lindner Novelties of our work: 1 extension of the Kolmogorov equation approach when the diffusion coefficient σ is not constant. 2 treatment of Burgers type nonlinearities. C-E Bréhier Multiplicative noise SPDEs: weak rates 8 / 21

  11. Plan of the talk Model, assumptions and results 1 SPDEs with non constant diffusion coefficient Numerical scheme Weak convergence result Study of the Kolmogorov equation 2 The Kolmogorov equation Basic regularity estimates Improved estimates: strategy C-E Bréhier Multiplicative noise SPDEs: weak rates 9 / 21

  12. Simplified problem Evolution equation: dY ( t ) = AY ( t ) dt + G ( Y ( t )) dt + σ ( Y ( t )) dW ( t ) , Y ( 0 ) = y . where the coefficients G : H → H and σ : H → L ( H ) are of class C 3 b . Discretization: spectral Galerkin approximation dY N ( t ) = AY N ( t ) dt + P N G ( Y N ( t )) dt + P N σ ( Y N ( t )) dW ( t ) . where P N y = � N n = 1 � y , e n � e n . Test function: ϕ : H → R is of class C 3 b . − 1 � � 2 + κ Weak error estimate: � E ϕ ( Y N ( T )) − E ϕ ( Y ( T )) � ≤ C κ ( ϕ, T ) λ N + 1 . � � C-E Bréhier Multiplicative noise SPDEs: weak rates 10 / 21

  13. The Kolmogorov equation � � � The function ( t , y ) �→ u ( t , y ) = E ϕ ( Y ( t )) � Y ( 0 ) = y is solution of the Kolmogorov equation ∂ u ( t , y ) = L u ( t , y ) ∂ t = � Ay + G ( y ) , Du ( t , y ) � + 1 � � σ ( y ) σ ( y ) ⋆ D 2 u ( t , y ) . 2 Tr C-E Bréhier Multiplicative noise SPDEs: weak rates 11 / 21

  14. The Kolmogorov equation � � � The function ( t , y ) �→ u ( t , y ) = E ϕ ( Y ( t )) � Y ( 0 ) = y is solution of the Kolmogorov equation ∂ u ( t , y ) = L u ( t , y ) ∂ t = � Ay + G ( y ) , Du ( t , y ) � + 1 � � σ ( y ) σ ( y ) ⋆ D 2 u ( t , y ) . 2 Tr Some regularity properties are needed: D 2 u ( t , y ) . ( h , k ) ≤ C β,γ ( t ) | h | − β | k | − γ . Du ( t , y ) . h ≤ C α ( t ) | h | − α , C-E Bréhier Multiplicative noise SPDEs: weak rates 11 / 21

  15. The Kolmogorov equation � � � The function ( t , y ) �→ u ( t , y ) = E ϕ ( Y ( t )) � Y ( 0 ) = y is solution of the Kolmogorov equation ∂ u ( t , y ) = L u ( t , y ) ∂ t = � Ay + G ( y ) , Du ( t , y ) � + 1 � � σ ( y ) σ ( y ) ⋆ D 2 u ( t , y ) . 2 Tr Some regularity properties are needed: D 2 u ( t , y ) . ( h , k ) ≤ C β,γ ( t ) | h | − β | k | − γ . Du ( t , y ) . h ≤ C α ( t ) | h | − α , Basic estimates: α ∈ [ 0 , 1 2 ) and β, γ ∈ [ 0 , 1 2 ) with β + γ < 1 2 . Improved estimates: α ∈ [ 0 , 1 ) and β, γ ∈ [ 0 , 1 2 ) . C-E Bréhier Multiplicative noise SPDEs: weak rates 11 / 21

  16. Decomposition of the weak error E ϕ ( Y ( T )) − E ϕ ( Y N ( T )) = u ( T , y ) − E u ( 0 , Y N ( T )) = u ( T , y ) − u ( T , P N y ) + u ( T , P N y ) − E u ( 0 , Y N ( T )) and using Itô’s formula and the Kolmogorov equation u ( T , P N y ) − E u ( 0 , Y N ( T )) � T L N − ∂ � � � � = E u T − t , Y N ( t ) dt ∂ t 0 � T � � � � = E L N − L T − t , Y N ( t ) u dt 0 C-E Bréhier Multiplicative noise SPDEs: weak rates 12 / 21

  17. Required regularity results for numerical analysis First-order derivative: − α ≤ C α ( T − t ) � ≤ C α ( T − t ) � � � � � � � � ( P N − I ) G ( y ) , Du T − t , Y ( t ) � � ( P N − I ) G ( y ) . � λ α N + 1 So we need α ∈ [ 0 , 1 2 ) . Burgers: G ( y ) = F 1 ( y ) + BF 2 ( y ) : α ∈ [ 0 , 1 ) . C-E Bréhier Multiplicative noise SPDEs: weak rates 13 / 21

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend