a new non markovian approach to weak convergence for
play

A new non-Markovian approach to weak convergence for SPDEs Adam - PowerPoint PPT Presentation

A new non-Markovian approach to weak convergence for SPDEs Adam Andersson Joint work with Raphael Kruse and Stig Larsson Mathematical Sciences Chalmers University of Technology G oteborg, Sweden Sixth Workshop on Random Dynamical Systems,


  1. A new non-Markovian approach to weak convergence for SPDEs Adam Andersson Joint work with Raphael Kruse and Stig Larsson Mathematical Sciences Chalmers University of Technology G¨ oteborg, Sweden Sixth Workshop on Random Dynamical Systems, Bielefeld 2 Nov, 2013 1 / 22

  2. Outline ◮ Stochastic integration in Hilbert space, 2 / 22

  3. Outline ◮ Stochastic integration in Hilbert space, ◮ Malliavin calculus, 2 / 22

  4. Outline ◮ Stochastic integration in Hilbert space, ◮ Malliavin calculus, ◮ Weak convergence, 2 / 22

  5. Outline ◮ Stochastic integration in Hilbert space, ◮ Malliavin calculus, ◮ Weak convergence, ◮ Strong convergence in a dual Watanabe-Sobolev norm. 2 / 22

  6. Cylindrical Q -Wiener process H , separable Hilbert space ( H = L 2 ( D ), D ⊂ R d ), 3 / 22

  7. Cylindrical Q -Wiener process H , separable Hilbert space ( H = L 2 ( D ), D ⊂ R d ), Q ∈ L ( H ) self-adjoint and positive semi-definite covariance operator, 3 / 22

  8. Cylindrical Q -Wiener process H , separable Hilbert space ( H = L 2 ( D ), D ⊂ R d ), Q ∈ L ( H ) self-adjoint and positive semi-definite covariance operator, 1 2 ( H ), Hilbert space with � u , v � 0 = � Q − 1 2 u , Q − 1 2 v � H , u , v ∈ U 0 , U 0 = Q 3 / 22

  9. Cylindrical Q -Wiener process H , separable Hilbert space ( H = L 2 ( D ), D ⊂ R d ), Q ∈ L ( H ) self-adjoint and positive semi-definite covariance operator, 1 2 ( H ), Hilbert space with � u , v � 0 = � Q − 1 2 u , Q − 1 2 v � H , u , v ∈ U 0 , U 0 = Q An operator I : L 2 ([0 , T ] , U 0 ) → L 2 (Ω) is said to be an isonormal process on a probability space (Ω , F , P ), if 3 / 22

  10. Cylindrical Q -Wiener process H , separable Hilbert space ( H = L 2 ( D ), D ⊂ R d ), Q ∈ L ( H ) self-adjoint and positive semi-definite covariance operator, 1 2 ( H ), Hilbert space with � u , v � 0 = � Q − 1 2 u , Q − 1 2 v � H , u , v ∈ U 0 , U 0 = Q An operator I : L 2 ([0 , T ] , U 0 ) → L 2 (Ω) is said to be an isonormal process on a probability space (Ω , F , P ), if ◮ I ( φ ) ∼ N (0 , � φ � L 2 ([0 , T ] , U 0 ) ) , ∀ φ ∈ L 2 ([0 , T ] , U 0 ), 3 / 22

  11. Cylindrical Q -Wiener process H , separable Hilbert space ( H = L 2 ( D ), D ⊂ R d ), Q ∈ L ( H ) self-adjoint and positive semi-definite covariance operator, 1 2 ( H ), Hilbert space with � u , v � 0 = � Q − 1 2 u , Q − 1 2 v � H , u , v ∈ U 0 , U 0 = Q An operator I : L 2 ([0 , T ] , U 0 ) → L 2 (Ω) is said to be an isonormal process on a probability space (Ω , F , P ), if ◮ I ( φ ) ∼ N (0 , � φ � L 2 ([0 , T ] , U 0 ) ) , ∀ φ ∈ L 2 ([0 , T ] , U 0 ), ◮ E [ I ( φ ) I ( ψ )] = � φ, ψ � L 2 ([0 , T ] , U 0 ) , ∀ φ, ψ ∈ L 2 ([0 , T ] , U 0 ). 3 / 22

  12. Cylindrical Q -Wiener process H , separable Hilbert space ( H = L 2 ( D ), D ⊂ R d ), Q ∈ L ( H ) self-adjoint and positive semi-definite covariance operator, 1 2 ( H ), Hilbert space with � u , v � 0 = � Q − 1 2 u , Q − 1 2 v � H , u , v ∈ U 0 , U 0 = Q An operator I : L 2 ([0 , T ] , U 0 ) → L 2 (Ω) is said to be an isonormal process on a probability space (Ω , F , P ), if ◮ I ( φ ) ∼ N (0 , � φ � L 2 ([0 , T ] , U 0 ) ) , ∀ φ ∈ L 2 ([0 , T ] , U 0 ), ◮ E [ I ( φ ) I ( ψ )] = � φ, ψ � L 2 ([0 , T ] , U 0 ) , ∀ φ, ψ ∈ L 2 ([0 , T ] , U 0 ). 3 / 22

  13. Cylindrical Q -Wiener process H , separable Hilbert space ( H = L 2 ( D ), D ⊂ R d ), Q ∈ L ( H ) self-adjoint and positive semi-definite covariance operator, 1 2 ( H ), Hilbert space with � u , v � 0 = � Q − 1 2 u , Q − 1 2 v � H , u , v ∈ U 0 , U 0 = Q An operator I : L 2 ([0 , T ] , U 0 ) → L 2 (Ω) is said to be an isonormal process on a probability space (Ω , F , P ), if ◮ I ( φ ) ∼ N (0 , � φ � L 2 ([0 , T ] , U 0 ) ) , ∀ φ ∈ L 2 ([0 , T ] , U 0 ), ◮ E [ I ( φ ) I ( ψ )] = � φ, ψ � L 2 ([0 , T ] , U 0 ) , ∀ φ, ψ ∈ L 2 ([0 , T ] , U 0 ). W : [0 , T ] × U 0 → L 2 (Ω) cylindrical Q -Wiener process: ∞ � W ( t ) u := I ( χ [0 , t ] ⊗ u ) = � u , u i � 0 β i ( t ) , i =1 where ( u i ) i ∈ N ⊂ U 0 is an ON-basis and ( β i ) i ∈ N are independent standard Brownian motions. 3 / 22

  14. The H -valued Wiener integral Wiener integral for simple integrands: � T χ [ s , t ] ⊗ ( h ⊗ u ) d W = [( W ( t ) − W ( s )) u ] ⊗ h ∈ L 2 (Ω) ⊗ H = L 2 (Ω , H ) 0 Extends directly to linear combinations. 4 / 22

  15. The H -valued Wiener integral Wiener integral for simple integrands: � T χ [ s , t ] ⊗ ( h ⊗ u ) d W = [( W ( t ) − W ( s )) u ] ⊗ h ∈ L 2 (Ω) ⊗ H = L 2 (Ω , H ) 0 Extends directly to linear combinations. Wiener’s isometry: � T � T 2 � � � φ � 2 φ d W H = 2 d t E � � L 0 � � 0 0 4 / 22

  16. The H -valued Wiener integral Wiener integral for simple integrands: � T χ [ s , t ] ⊗ ( h ⊗ u ) d W = [( W ( t ) − W ( s )) u ] ⊗ h ∈ L 2 (Ω) ⊗ H = L 2 (Ω , H ) 0 Extends directly to linear combinations. Wiener’s isometry: � T � T 2 � � � φ � 2 φ d W H = 2 d t E � � L 0 � � 0 0 By density the integral extends to all of L 2 ([0 , T ] , L 0 2 ). For stochastic equations driven by additive noise this definition of the integral suffices. 4 / 22

  17. Malliavin calculus p ( R n ) denote the space of all C ∞ -functions over R n with Let C ∞ polynomial growth. Define S = { X = f ( I ( φ 1 ) , . . . , I ( φ n )): f ∈ C ∞ p ( R n ) , φ 1 , . . . , φ n ∈ L 2 ([0 , T ] , U 0 ) , n ≥ 1 } and n � � � S ( H ) = F = X k ⊗ h k : X 1 , . . . , X n ∈ S , h 1 , . . . , h n ∈ H , n ≥ 1 . k =1 5 / 22

  18. Malliavin calculus p ( R n ) denote the space of all C ∞ -functions over R n with Let C ∞ polynomial growth. Define S = { X = f ( I ( φ 1 ) , . . . , I ( φ n )): f ∈ C ∞ p ( R n ) , φ 1 , . . . , φ n ∈ L 2 ([0 , T ] , U 0 ) , n ≥ 1 } and n � � � S ( H ) = F = X k ⊗ h k : X 1 , . . . , X n ∈ S , h 1 , . . . , h n ∈ H , n ≥ 1 . k =1 We define the Malliavin derivative of F ∈ S ( H ) as the process m n � � D t F = ∂ i f k ( I ( φ 1 ) , . . . , I ( φ n )) ⊗ ( h k ⊗ φ i ( t )) k =1 i =1 and let, for v ∈ U 0 , m n D v � � t F = D t Fv = ∂ i f k ( I ( φ 1 ) , . . . , I ( φ n )) ⊗ � φ i ( t ) , v � 0 ⊗ h k k =1 i =1 5 / 22

  19. Malliavin calculus: integration by parts For all F ∈ S ( H ) and Φ ∈ L 2 ([0 , T ] , L 0 2 ), � T � � � DF , Φ � L 2 ([0 , T ] × Ω , L 0 2 ) = F , Φ( t ) d W ( t ) L 2 (Ω , H ) . 0 6 / 22

  20. Malliavin calculus: integration by parts For all F ∈ S ( H ) and Φ ∈ L 2 ([0 , T ] , L 0 2 ), � T � � � DF , Φ � L 2 ([0 , T ] × Ω , L 0 2 ) = F , Φ( t ) d W ( t ) L 2 (Ω , H ) . 0 Let D 1 , p ( H ) be the closure of S ( H ) with respect to the norm � � T �� 1 p . � E [ � F � p � D t F � p � F � D 1 , p ( H ) = H ] + E 2 d t L 0 0 6 / 22

  21. Malliavin calculus: integration by parts For all F ∈ S ( H ) and Φ ∈ L 2 ([0 , T ] , L 0 2 ), � T � � � DF , Φ � L 2 ([0 , T ] × Ω , L 0 2 ) = F , Φ( t ) d W ( t ) L 2 (Ω , H ) . 0 Let D 1 , p ( H ) be the closure of S ( H ) with respect to the norm � � T �� 1 p . � E [ � F � p � D t F � p � F � D 1 , p ( H ) = H ] + E 2 d t L 0 0 Let ( δ, D ( δ )) be the adjoint of D : L 2 (Ω , H ) → L 2 ([0 , T ] × Ω , L 0 2 ). � � � DF , Φ � L 2 ([0 , T ] × Ω , L 0 2 ) = F , δ Φ L 2 (Ω , H ) . 6 / 22

  22. Malliavin calculus: integration by parts For all F ∈ S ( H ) and Φ ∈ L 2 ([0 , T ] , L 0 2 ), � T � � � DF , Φ � L 2 ([0 , T ] × Ω , L 0 2 ) = F , Φ( t ) d W ( t ) L 2 (Ω , H ) . 0 Let D 1 , p ( H ) be the closure of S ( H ) with respect to the norm � � T �� 1 p . � E [ � F � p � D t F � p � F � D 1 , p ( H ) = H ] + E 2 d t L 0 0 Let ( δ, D ( δ )) be the adjoint of D : L 2 (Ω , H ) → L 2 ([0 , T ] × Ω , L 0 2 ). � � � DF , Φ � L 2 ([0 , T ] × Ω , L 0 2 ) = F , δ Φ L 2 (Ω , H ) . D ( δ ) ⊂ L 2 ([0 , T ] × Ω , L 0 2 ) is large and contains in particular all � T predictable L 0 2 -valued processes. In this case δ (Φ) = 0 Φ( t ) d W ( t ). 6 / 22

  23. The stochastic equation An easy equation for a difficult problem: d X ( t ) + AX ( t ) d t = F ( X ( t )) d t + d W ( t ) , t ∈ (0 , T ] , X (0) = X 0 . 7 / 22

  24. The stochastic equation An easy equation for a difficult problem: d X ( t ) + AX ( t ) d t = F ( X ( t )) d t + d W ( t ) , t ∈ (0 , T ] , X (0) = X 0 . ◮ H = L 2 ( D ), where D is a bounded, convex and polygonal domain of R d , d = 1 , 2 , 3. 7 / 22

  25. The stochastic equation An easy equation for a difficult problem: d X ( t ) + AX ( t ) d t = F ( X ( t )) d t + d W ( t ) , t ∈ (0 , T ] , X (0) = X 0 . ◮ H = L 2 ( D ), where D is a bounded, convex and polygonal domain of R d , d = 1 , 2 , 3. ◮ ( A , D ( A )) selfadjoint with compact inverse, − A the generator of an analytic semigroup ( S ( t )) t ≥ 0 . 7 / 22

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend