kilonova macronova emission from compact binary mergers
play

Kilonova/Macronova Emission from Compact Binary Mergers Masaomi - PowerPoint PPT Presentation

Kilonova/Macronova Emission from Compact Binary Mergers Masaomi Tanaka (Na$onal Astronomical Observatory of Japan) 1 deg ~ 100 galaxies / 1 deg 2 (< 200 Mpc) SDSS 10 deg h:p://www.ligo.org/detec$ons.php Localiza:on ~ 600 deg 2 (~< 10


  1. Kilonova/Macronova Emission from Compact Binary Mergers Masaomi Tanaka (Na$onal Astronomical Observatory of Japan)

  2. 1 deg ~ 100 galaxies / 1 deg 2 (< 200 Mpc) SDSS

  3. 10 deg h:p://www.ligo.org/detec$ons.php

  4. Localiza:on ~ 600 deg 2 (~< 10 deg 2 with Advanced Virgo and KAGRA) 10 deg Detec:on of electromagne:c (EM) counterparts is essen:al - RedshiL (distance) - Host galaxy - Local environment Abbo: et al. 2016, ApJ, 826, L13 see Samaya Nissanke’s talk

  5. Degeneracy between Local environments inclina:on and distance Abbo: et al. 2016, PRL, 116, 241102 Berger 2014 (for short GRBs)

  6. Kilonova/Macronova Emission from Compact Binary Mergers • EM emission from compact binary mergers • Kilonova/macronova emission • Lessons from past observa@ons and prospects for EM follow-up observa@ons

  7. Electromagne@c signature from compact binary merger (NS-NS or BH-NS) • On-axis short GRB Jet ISM Shock (After g low) Optical (ho u rs days) Radio (weeks years) Ejecta ISM Shock Radio (years) obs • Radio aLerglow GRB (t ~ 0.1 1 s) Kilonova Optical (t ~ 1 day) j Mer g er Ejecta Tidal Tail & Disk Wind v ~ 0.1 0.3 c • Op:cal/NIR emission BH “kilonova” or “macronova” Metzger & Berger 2012, ApJ 746, 48 see talks by Nissanke, Piran, Zhang, ...

  8. Short gamma-ray burst (GRBs) Visible Opening angle ~ 10 deg Not visible => probability ~ a few % 20 18 Long 16 Short 14 12 Number 10 8 6 4 2 0 0 5 10 15 20 25 30 35 Opening Angle θ j (degrees) (C) ESO Fong et al. 2014, ApJ, 780, 118

  9. Mass ejec:on from NS mergers - :dal disrup:on - shock hea:ng M ~ 10 -3 - 10 -2 Msun v ~ 0.1 - 0.2 c Rosswog 99, 00, Ruffert & Janka 01 Hotokezaka+13, Bauswein+13 see talks by Rezzolla, Janka, Sekiguchi, ... Hotokezaka+13

  10. 200 Mpc 150 MHz, n = 0.1 cm -3 150MHz, n=0.1cm -3 Radio emission (aLerglow) jet ( 0 ° ) jet (45 ° ) 10 jet (90 ° ) dynamical breakout 1 F ν [mJy] 0.1 mJy 0.1 0.01 0.001 1 10 100 1000 10000 t [day] 150 MHz, n = 0.01 cm -3 150MHz, n=0.01cm -3 jet ( 0 ° ) jet (45 ° ) 10 jet (90 ° ) - Delayed by ~> years dynamical breakout - Too faint? 1 F ν [mJy] 0.1 mJy (low environment density) 0.1 0.01 Nakar & Piran 11 0.001 1 10 100 1000 10000 Hotokezaka & Piran 15 t [day]

  11. Electromagne@c signature from compact binary merger (NS-NS or BH-NS) • On-axis short GRB Jet ISM Shock (After g low) strongly beamed Optical (ho u rs days) Radio (weeks years) (isotropic soL X-ray?) Ejecta ISM Shock Radio (years) obs • Off-axis radio aLerglow GRB (t ~ 0.1 1 s) Kilonova isotropic Optical (t ~ 1 day) j Mer g er Ejecta delayed by ~> 1 yr Tidal Tail & Disk Wind v ~ 0.1 0.3 c • Op:cal/NIR emission BH “kilonova” or “macronova” isotropic short delay Metzger & Berger 2012, ApJ 746, 48

  12. Kilonova/Macronova Emission from Compact Binary Mergers • EM emission from compact binary mergers • Kilonova/macronova emission • Lessons from past observa@ons and prospects for EM follow-up observa@ons

  13. Mass ejec:on from NS mergers - :dal disrup:on - shock hea:ng M ~ 10 -3 - 10 -2 Msun v ~ 0.1 - 0.2 c Rosswog 99, 00, Ruffert & Janka 01 Hotokezaka+13, Bauswein+13 see talks by Rezzolla, Janka, Sekiguchi, ... Hotokezaka+13

  14. Nucleosynthesis in NS merger Korobkin+12

  15. (C) NASA

  16. Nucleosynthesis in NS merger ν e + n -> p + e - higher T n + e + -> ν e + p higher Ye => solar abundances ν (e.g., Wanajo+14, Just+15, Wu+16) see talks by Janka, Sekiguchi, ... n e n p Y e = = 10 -2 n p + n n n p + n n 10 0 solar r-abundance mass-averaged 10 -3 0.1 0.2 0.3 0.4 10 -1 10 -4 mass fraction abundance 10 -5 10 -2 10 -6 10 -3 10 -7 10 -4 0.0 0.1 0.2 0.3 0.4 0.5 10 -8 Y e 0 50 100 150 200 250 mass number 10 0

  17. NS merger as a possible origin of r-process elements Event rate Ejec@on per event R NSM ~ 10 -4 event/yr/Galaxy M ej (r-process) ~ 10 -2 Msun ~ 10 3 Gpc -3 yr -1 ~ 40 GW events yr -1 (w/ Adv. detectors, < 200 Mpc) EM GW Enough to explain the r-process abundance in our Galaxy M(Galaxy, r-process) ~ M ej (r) x (R NSM x t G ) ~ 10 -2 x 10 -4 x 10 10 ~ 10 4 Msun (e.g., Piran+14, Ma:eucci+14, Tsujimoto+14, Cescue+15)

  18. LIGO O1: Limit to the NS merger rate R NSM ~< 10 4 Gpc -3 yr -1 see Laura Nulall’s talk Abbo: et al. (arXiv:1607.07456) O3 O2 O1 Dominik et al. pop syn de Mink & Belczynski pop syn Vangioni et al. r-process Jin et al. kilonova Petrillo et al. GRB Coward et al. GRB Siellez et al. GRB Fong et al. GRB Kim et al. pulsar aLIGO 2010 rate compendium 10 0 10 1 10 2 10 3 10 4 BNS Rate (Gpc − 3 yr − 1 )

  19. Radioac@ve energy => op@cal emission 1 10 100 NS merger days Supernova Metzger+10, MNRAS, 406, 2650 see also Wanajo+14, Lippuner+15, Barnes+16

  20. Supernova vs NS merger Supernova (Type Ia) NS merger > Mass 1.4 Msun 0.01 Msun < Velocity 10,000 km/s 30,000-60,000 km/s > Kine:c energy 10 51 erg (1-5) x 10 50 erg ~ Composi:on Fe-group, Si, S, C, O r-process elements Power source 56 Ni r-process elements

  21. “kilonova/macronova” energy energy Li & Paczynski 98, Metzger+10, deposi:on deposi:on Kasen+13, Barnes & Kasen 13 MT & Hotokezaka 13, MT+14 10 42 ~ 19-20 mag @200 Mpc Luminosity (erg/s) (=> 1m telescope) 10 41 10 40 *Opacity of Fe is assumed 10 39 (b-b transi:ons) Goriely+11

  22. 3D frequency-dependent radia:ve transfer for NS merger MT & Hotokezaka 2013, ApJ, 775, 113 600,000 b-b transi$ons for 90 elements

  23. Opacity 1000 r-process NSM-all 100 NSM-Fe Fe 10 κ (cm 2 g -1 ) 1 0.1 0.01 0.001 5000 10000 15000 MT & Hotokezaka 2013 Wavelength (A) =3 � 1 / 2 � v � 1 / 2 � � � 1 / 2 � M ej κ t peak � 0 . 8 days 0 . 1 cm 2 g � 1 0 . 01 M � 0 . 1 c 8 10 � 0 . 35 � � − 0 . 65 2 � 10 41 erg s − 1 � � 0 . 65 � M ej v L peak � κ 0 . 1 cm 2 g � 1 0 . 01 M � 0 . 1 c 1 x 10 40 10 Similar conclusions by Kasen+13 and Barnes & Kasen 13 with different opacity database (more complete table for a few elements)

  24. Lanthanide => high opacity Lanthanide “Complexity” g i ! C = Π i n i !( g i − n i )! , g: number of sublevels has g = 2(2 l + 1) number of states in a n: number of electrons Number of lines ~ C 2 Kasen+13

  25. Luminosity previous Fe opacity expecta:on (Fe opacity) r-process opacity Barnes & Kasen 13

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend