kempf ness type theorems and nahm s equations
play

KempfNess type theorems and Nahms equations Maxence Mayrand - PowerPoint PPT Presentation

KempfNess type theorems and Nahms equations Maxence Mayrand University of Toronto December 7, 2019 Maxence Mayrand (UofT) Kempf-Ness and Nahm December 7, 2019 1 / 15 Setup of KempfNess type theorems Let ( M , , I , L ,


  1. Kempf–Ness type theorems and Nahm’s equations Maxence Mayrand University of Toronto December 7, 2019 Maxence Mayrand (UofT) Kempf-Ness and Nahm December 7, 2019 1 / 15

  2. Setup of Kempf–Ness type theorems Let ( M , ω, I , L , � · � ) be a Hodge manifold , i.e. ( M , ω, I ) K¨ ahler manifold (not necessarily compact); i 2 π F , F curvature of unitary holomorphic line bundle L → M ω = with hermitian metric � · � (prequantization). Example (standard) M ⊆ CP n , ω = ω FS | M , L = O (1) | M . M ⊆ C n , ω = ω flat | M , L = M × C . Example (non-standard) ⇒ M ⊆ CP n projective. Kodaira: compact + Hodge = But ω � = ω FS | M in general. M ⊆ C n with K¨ ahler potential f : M → R , i.e. ω = 2 i ∂ ¯ ∂ f . → C N in general. ∄ isometry M ֒ Maxence Mayrand (UofT) Kempf-Ness and Nahm December 7, 2019 2 / 15

  3. Setup of Kempf–Ness type theorems Input ( M , ω, I , L , � · � ) Hodge manifold, L → M complex algebraic; G compact Lie group; G C � L such that G preserves � · � . Then, G � M preserving ( ω, I ) and there is a canonical moment map 1 µ ( p )( x ) = d � 2 π log � e itx · ˆ µ : M − → g ∗ , p � , � dt � t =0 p ∈ L ∗ \ { 0 } , ˆ for x ∈ g , p ∈ M , ˆ p �→ p . Output Two types of quotients: 1 Symplectic quotient: µ − 1 (0) / G (stratified symplectic space) 2 GIT quotient: M / / (complex algebraic variety) L G C Maxence Mayrand (UofT) Kempf-Ness and Nahm December 7, 2019 3 / 15

  4. Kempf–Ness type theorems We have µ − 1 (0) ⊆ M L -ss , so there is a map µ − 1 (0) / G − → M / / L G C . (1) A Kempf–Ness type theorem is a condition which implies (1) is an isomorphism, i.e. a homeomorphism respecting the natural stratifications; the symplectic structures on the strata of the LHS and the complex structures on the strata of the RHS give K¨ ahler structures. ⇒ (1) is ∼ Example. M compact = =. [Kirwan 1984] for the case M ⊆ CP n with ω = ω FS | M . [Sjamaar 1994] for the general case ( M ⊆ CP n but ω � = ω FS | M ). If M is non-compact, we have to be more careful. We will discuss the case of affine varieties with ω = 2 i ∂ ¯ ∂ f in detail. Maxence Mayrand (UofT) Kempf-Ness and Nahm December 7, 2019 4 / 15

  5. Complex analytic version of the Kempf–Ness theorem First step: Complex analytic version. M µ -ss := { p ∈ M : G C · p ∩ µ − 1 (0) � = ∅} ⊆ M . G C -invariant analytically semistable points open Theorem (Guillemin–Sternberg 1982, Kirwan 1984, Sjamaar 1994, Heinzner–Loose 1994) There is a categorial quotient in the category of complex analytic spaces for G C � M µ -ss , denoted M µ -ss / / G C . Moreover, µ − 1 (0) M µ -ss ∼ = µ − 1 (0) / G M µ -ss / / G C . Maxence Mayrand (UofT) Kempf-Ness and Nahm December 7, 2019 5 / 15

  6. Complex analytic version of the Kempf–Ness theorem Recall: GIT quotient L G C = M L -ss / M / / / G C . categorical quot. algebraic varieties Luna 1976: Underlying complex analytic space L G C = M L -ss / M / / / G C . categorical quot. complex spaces By previous theorem, = M µ -ss / µ − 1 (0) / G ∼ / G C categorical quot. complex spaces so, by uniqueness of categorical quotients, Kempf–Ness holds if M µ -ss = M L -ss analytic semistability = algebraic semistability Maxence Mayrand (UofT) Kempf-Ness and Nahm December 7, 2019 6 / 15

  7. The general Kempf–Ness theorem Theorem (Kempf–Ness 1979, Mumford, Guillemin–Sternberg 1982, Ness 1984, Kirwan 1984, Sjamaar 1994, Heinzner–Loose 1994, ...) ( M , ω, I , L , � · � ) Hodge manifold G C � L, G preserves � · � Then, G � ( M , ω, I ) with canonical moment map µ : M → g ∗ . We have µ − 1 (0) ⊆ M L -ss so there is a map µ − 1 (0) / G − → M / / L G C . (2) Suppose: (i) Algebraic Condition: ( M , L ) satisfies the geometric criterion : M L -ss = { p ∈ M : ∃ ˆ p ∈ L ∗ \ { 0 } , ˆ p ⊆ L ∗ \ { 0 }} p �→ p , G C · ˆ e.g. M is projective, affine, or projective-over-affine. (ii) Analytic Condition: � · � 2 : L ∗ → R is proper on closed G C -orbits disjoint from the zero-section. Then, M µ -ss = M L -ss so (2) is an isomorphism. ⇒ (i) & (ii). So µ − 1 (0) / G ∼ Example. M compact = = M / / L G C . Maxence Mayrand (UofT) Kempf-Ness and Nahm December 7, 2019 7 / 15

  8. The case of affine varieties (I) Kempf–Ness 1979 M ⊆ C n complex affine G C � M via G C → GL ( n , C ) ω = ω flat | M L = M × C , G C � L , g · ( p , z ) = ( g · p , z ). = ⇒ µ = µ std µ std ( p )( x ) = − 1 µ std : M − → g ∗ , 2 Im � xp , p � , ( p ∈ M , x ∈ g ) . Kempf–Ness holds, so std (0) / G ∼ µ − 1 = Spec C [ M ] G C Maxence Mayrand (UofT) Kempf-Ness and Nahm December 7, 2019 8 / 15

  9. The case of affine varieties (II) King 1994 M ⊆ C n complex affine G C � M via G C → GL ( n , C ) ω = ω flat | M L χ = M × C , χ : G C → C ∗ g · ( p , z ) = ( g · p , χ ( g ) z ) , = ⇒ µ = µ std − ξ ξ := i 2 π d χ ∈ g ∗ Kempf–Ness holds, so � ∞ � µ − 1 ( ξ ) / G ∼ C [ M ] G C ,χ n � = M / / L χ G C = Proj n =0 Maxence Mayrand (UofT) Kempf-Ness and Nahm December 7, 2019 9 / 15

  10. The case of affine varieties (III) Azad–Loeb 1993 M ⊆ C n complex affine G C � M via G C → GL ( n , C ) ( f = � · � 2 recovers (I)). ω = 2 i ∂ ¯ f : M → R , ∂ f , G -invariant L = M × C , g · ( p , z ) = ( g · p , z ) = ⇒ µ = µ f , where µ f ( p )( x ) = df ( Ix # µ f : M − → g ∗ , p ) , ( p ∈ M , x ∈ g ) . Kempf-Ness holds if f is proper and bounded below . In that case, (0) / G ∼ µ − 1 = Spec C [ M ] G C . f Maxence Mayrand (UofT) Kempf-Ness and Nahm December 7, 2019 10 / 15

  11. The case of affine varieties (IV) M ⊆ C n complex affine G C � M via G C → GL ( n , C ) ω = 2 i ∂ ¯ f : M → R , ∂ f , G -invariant L χ = M × C , χ : G C → C ∗ g · ( p , z ) = ( g · p , χ ( g ) z ) , = ⇒ µ = µ f − ξ Kempf–Ness can fail even if f is proper and bounded below: Example C ∗ � C ∗ with f ( z ) = 1 + (log | z | 2 ) 2 and χ ( z ) = z 3 . Then, � µ − 1 ( ξ ) / G = ∅ , L χ G C = { pt } . M / / f Maxence Mayrand (UofT) Kempf-Ness and Nahm December 7, 2019 11 / 15

  12. The case of affine varieties Theorem If C [ M ] ⊆ o ( e f ) i.e. u ( p ) ∀ polynomial u : M → C , lim e f ( p ) = 0 , p →∞ then the Kempf–Ness theorem holds, so � ∞ � ( ξ ) / G ∼ C [ M ] G C ,χ n µ − 1 � = Proj , f n =0 where µ f ( p )( x ) = df ( Ix # i p ) and ξ = 2 π d χ ∈ g ∗ . For example, C [ x ] ⊆ o ( x log x ) = o ( e (log x ) 2 ). The example with Nahm’s equations will look like this, i.e. f ( x ) ∼ (log | x | ) 2 . Maxence Mayrand (UofT) Kempf-Ness and Nahm December 7, 2019 12 / 15

  13. Example from Nahm’s equations Nahm’s equations: 1D reduction of the self-dual Yang–Mills equations. A = ( A 0 , A 1 , A 2 , A 3 ) : I ⊆ R − → g ⊗ H ˙ A 1 + [ A 0 , A 1 ] + [ A 2 , A 3 ] = 0 ˙ A 2 + [ A 0 , A 2 ] + [ A 3 , A 1 ] = 0 ˙ A 3 + [ A 0 , A 3 ] + [ A 1 , A 2 ] = 0 . Natural action by gauge transformations: G := { g : I → G } � { solutions to Nahm’s eqs. } I = [0 , 1], G 0 = { g ∈ G : g (0) = g (1) = 1 } . M := { solutions to Nahm’s eqs } / G 0 Theorem (Kronheimer 1988) M is a hyperk¨ ahler manifold; ( M , g , I , J , K ) . M ∼ = T ∗ G C , biholomorphism with respect to I. Maxence Mayrand (UofT) Kempf-Ness and Nahm December 7, 2019 13 / 15

  14. Example from Nahm’s equations Theorem (Dancer–Swann 1996) G × G � T ∗ G C preserves hyperk¨ ahler structure. There is a hyperk¨ ahler moment map � A 1 (0) � A 2 (0) A 3 (0) → ( g ∗ × g ∗ ) 3 , µ : T ∗ G C − µ ( A ) = . − A 1 (1) − A 2 (1) − A 3 (1) For all closed subgroup H ⊆ G × G and χ 1 , χ 2 , χ 3 : H → S 1 , ξ H := µ − 1 T ∗ G C / / / h ( ξ ) / H 2 π ( d χ 1 , d χ 2 , d χ 3 ) ∈ ( h ∗ ) 3 and i is a stratified hyperk¨ ahler space, where ξ = i ∗ µ ( g ∗ × g ∗ ) 3 h ( h ∗ ) 3 . µ h : M Maxence Mayrand (UofT) Kempf-Ness and Nahm December 7, 2019 14 / 15

  15. Example from Nahm’s equations T ∗ G C is a complex affine variety → C N in general ∄ isometric T ∗ G C ֒ ω 1 = 2 i ∂ ¯ ∂ f and µ 1 = µ f , where � 1 f ( A ) = 1 2 � A 1 � 2 + � A 2 � 2 + � A 3 � 2 � f : T ∗ G C − → R , � 4 0 µ C := µ 2 + i µ 3 : T ∗ G C → g ∗ C × g ∗ C is complex algebraic Theorem We have C [ T ∗ G C ] ⊆ o ( e f ) . Hence, for all H ⊆ G × G and χ 1 , χ 2 , χ 3 : H → S 1 , � ∞ � ξ H ∼ C ( ξ 2 + i ξ 3 )] H C ,χ n � C [ µ − 1 T ∗ G C / / / = Proj . 1 n =0 Maxence Mayrand (UofT) Kempf-Ness and Nahm December 7, 2019 15 / 15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend