kac modules and boundary temperley lieb algebras for
play

Kac modules and boundary Temperley-Lieb algebras for logarithmic - PowerPoint PPT Presentation

Loop model Boundary algebras Virasoro modules Scaling limit Conclusion Kac modules and boundary Temperley-Lieb algebras for logarithmic minimal models Alexi Morin-Duchesne Universit e Catholique de Louvain Florence, 28/05/2015 Joint


  1. Loop model Boundary algebras Virasoro modules Scaling limit Conclusion Kac modules and boundary Temperley-Lieb algebras for logarithmic minimal models Alexi Morin-Duchesne Universit´ e Catholique de Louvain Florence, 28/05/2015 Joint work with Jørgen Rasmussen and David Ridout arXiv:1503.07584 [hep-th]

  2. Loop model Boundary algebras Virasoro modules Scaling limit Conclusion Outline • Loop models with boundary seams • Relation with the one-boundary Temperley-Lieb algebra • Virasoro Kac modules • Scaling limit of the loop models

  3. Loop model Boundary algebras Virasoro modules Scaling limit Conclusion Dense loop model • Configuration of the dense loop model with a boundary seam: • Fugacity of closed loops: β = 2 cos λ λ = π ( p ′ − p ) p , p ′ ∈ Z + • Roots of unity: p < p ′ p ′

  4. Loop model Boundary algebras Virasoro modules Scaling limit Conclusion Temperley-Lieb algebra TL n ( β ) Generators A connectivity ... ... ... I = e j = a = n j j + 1 n 1 2 3 1 = e 1 e 2 e 4 e 3 • Multiplication is by vertical concatenation: = β 2 a 3 = β 2 a 1 a 2 = Algebraic definition � � TL n ( β ) = I , e j ; j = 1 , . . . , n − 1 ( e j ) 2 = β e j e j e j ± 1 e j = e j e i e j = e j e i ( | i − j | > 1 )

  5. Loop model Boundary algebras Virasoro modules Scaling limit Conclusion Temperley-Lieb algebra TL n ( β ) Generators A connectivity ... ... ... I = e j = a = n j j + 1 n 1 2 3 1 = e 1 e 2 e 4 e 3 • Multiplication is by vertical concatenation: ... ... ( e j ) 2 = = β ... ... = β e j ... ... j j + 1 n 1 1 j j + 1 n Algebraic definition � � TL n ( β ) = I , e j ; j = 1 , . . . , n − 1 ( e j ) 2 = β e j e j e j ± 1 e j = e j e i e j = e j e i ( | i − j | > 1 )

  6. Loop model Boundary algebras Virasoro modules Scaling limit Conclusion Temperley-Lieb algebra TL n ( β ) Generators A connectivity ... ... ... I = e j = a = n j j + 1 n 1 2 3 1 = e 1 e 2 e 4 e 3 • Multiplication is by vertical concatenation: e j e j + 1 e j = ... ... = ... ... = e j j j + 1 n 1 j j + 1 n 1 Algebraic definition � � TL n ( β ) = I , e j ; j = 1 , . . . , n − 1 ( e j ) 2 = β e j e j e j ± 1 e j = e j e i e j = e j e i ( | i − j | > 1 )

  7. Loop model Boundary algebras Virasoro modules Scaling limit Conclusion Transfer tangles with boundary seams • D ( u , ξ ) is an element of TL n + k ( β ) : (Pearce, Rasmussen, Zuber 2006) k . . . . . . . . . u u u u + ξ k u + ξ 2 u + ξ 1 D ( u , ξ ) = . . . . . . . . . u u u u − ξ k u − ξ 2 u − ξ 1 k � �� � n s k ( u ) = sin ( u + k λ ) = s 1 (− u ) + s 0 ( u ) ξ j = ξ + j λ u sin λ − 1 • Projectors: = = 1 2 β � � � � β 1 = − + + + 3 β 2 − 1 β 2 − 1 • YBE + BYBE [ D ( u , ξ ) , D ( v , ξ )] = 0 →

  8. Loop model Boundary algebras Virasoro modules Scaling limit Conclusion Transfer tangles with boundary seams • D ( u , ξ ) is an element of TL n + k ( β ) : (Pearce, Rasmussen, Zuber 2006) 4 4 s k ( u ) = sin ( u + k λ ) = s 1 (− u ) + s 0 ( u ) ξ j = ξ + j λ u sin λ − 1 • Projectors: = = 1 2 β � � � � β 1 = − + + + 3 β 2 − 1 β 2 − 1 • YBE + BYBE [ D ( u , ξ ) , D ( v , ξ )] = 0 →

  9. Loop model Boundary algebras Virasoro modules Scaling limit Conclusion Transfer tangles with boundary seams • D ( u , ξ ) is an element of TL n + k ( β ) : (Pearce, Rasmussen, Zuber 2006) 4 β 2 4 s k ( u ) = sin ( u + k λ ) = s 1 (− u ) + s 0 ( u ) ξ j = ξ + j λ u sin λ − 1 • Projectors: = = 1 2 β � � � � β 1 = − + + + 3 β 2 − 1 β 2 − 1 • YBE + BYBE [ D ( u , ξ ) , D ( v , ξ )] = 0 →

  10. Loop model Boundary algebras Virasoro modules Scaling limit Conclusion Hamiltonian tangle � � • The Hamiltonian tangle H is obtained by taking d D ( u ,ξ ) � u = 0 : du n − 1 � 1 ( k ) ( k ) H = − E + s 0 ( ξ ) s k + 1 ( ξ ) E n j j = 1 where ... ... ... ( k ) E = ( j = 1 , . . . , n − 1 ) k j ... 1 j j + 1 n n + 1 n + k ... k = U k − 1 ( β ... ... ... ( k ) E 2 ) n k ... 1 2 n n + 1 n + k • U k ( x ) are Chebyshev polynomials of the second kind: U 0 ( β U 1 ( β U 2 ( β 2 ) = β 2 − 1 , U 3 ( β 2 ) = β ( β 2 − 2 ) , 2 ) = 1 , 2 ) = β, . . .

  11. Loop model Boundary algebras Virasoro modules Scaling limit Conclusion Standard modules • Definition: V d n : vector space generated by link patterns n : number of nodes d : number of defects (vertical segments) Examples: � � V 0 6 = span , , , , � � V 4 6 = span , , , , • TL n ( β ) action on V d n : = β = 0 • Defines one representation of TL n ( β ) for each d .

  12. Loop model Boundary algebras Virasoro modules Scaling limit Conclusion Lattice Kac modules • Projector – half-arc annihilation relation: = 0 k − 1 − β Example: = = = 0 2 β β

  13. Loop model Boundary algebras Virasoro modules Scaling limit Conclusion Lattice Kac modules • Projector – half-arc annihilation relation: = 0 k − 1 − β Example: = = = 0 2 β β • D ( u , ξ ) and H act trivially on a subspace of V d n + k : 2 u u u u u + ξ 2 u + ξ 1 = 0 u u u u u − ξ 2 u − ξ 1 2

  14. Loop model Boundary algebras Virasoro modules Scaling limit Conclusion Lattice Kac modules • Projector – half-arc annihilation relation: = 0 k − 1 − β Example: = = = 0 2 β β • D ( u , ξ ) and H act trivially on a subspace of V d n + k : 2 u u u u u + ξ 2 u + ξ 1 = 0 u u u u u − ξ 2 u − ξ 1 2 • Lattice Kac module K d n , k : quotient of V d n + k by the trivial subspace Examples for k = 2: � � � � � K 0 4 , 2 = span span , , , , , • Hamiltonians = realisations of H in K d n , k

  15. Loop model Boundary algebras Virasoro modules Scaling limit Conclusion Lattice Kac modules • Projector – half-arc annihilation relation: = 0 k − 1 − β Example: = = = 0 2 β β • D ( u , ξ ) and H act trivially on a subspace of V d n + k : 2 u u u u u + ξ 2 u + ξ 1 = 0 u u u u u − ξ 2 u − ξ 1 2 • Lattice Kac module K d n , k : quotient of V d n + k by the trivial subspace Examples for k = 2: � � � � � K 4 4 , 2 = span span , , , , • Hamiltonians = realisations of H in K d n , k

  16. Loop model Boundary algebras Virasoro modules Scaling limit Conclusion ( 1 ) One-boundary TL algebra: TL n Generators A connectivity ... ... ... ... I = e j = e n = b = n j j + 1 n n 1 2 3 1 1 = e 2 e 6 e 3 e 5 e 4 e 6 • Multiplication is again by vertical concatenation: ( 2 ) ( 1 ) b 1 b 2 = = ββ 1 = ββ 1 b 3 , Algebraic definition � � ( 1 ) TL n ( β, β 1 , β 2 ) = I , e j ; j = 1 , . . . , n ( e j ) 2 = β e j e j e j ± 1 e j = e j e i e j = e j e i ( | i − j | > 1 ) e 2 n = β 2 e n e n − 1 e n e n − 1 = β 1 e n − 1 e i e n = e n e i ( i < n − 1 )

  17. Loop model Boundary algebras Virasoro modules Scaling limit Conclusion ( 1 ) One-boundary TL algebra: TL n Generators A connectivity I = ... e j = ... ... e n = ... b = n j j + 1 n n 1 2 3 1 1 = e 2 e 6 e 3 e 5 e 4 e 6 • Multiplication is again by vertical concatenation: ( 2 ) ( 1 ) b 1 b 2 = = β 2 = β 2 b 3 , ( 2 ) ( 1 ) Algebraic definition � � ( 1 ) TL n ( β, β 1 , β 2 ) = I , e j ; j = 1 , . . . , n ( e j ) 2 = β e j e j e j ± 1 e j = e j e i e j = e j e i ( | i − j | > 1 ) e 2 n = β 2 e n e n − 1 e n e n − 1 = β 1 e n − 1 e i e n = e n e i ( i < n − 1 )

  18. Loop model Boundary algebras Virasoro modules Scaling limit Conclusion Boundary seam algebras � � • Definition: ( k ) , E ( k ) B n , k = I j ; j = 1 , . . . , n ( k ) = ... ... ( k ) I ... E = ... ... ... ... j ... = U k − 1 ( β ( k ) ... ... ... E 2 ) n ... • D ( u , ξ ) and H are elements of B n , k . • Algebraic relations, with β 1 = U k ( β β 2 = U k − 1 ( β 2 ) , 2 ) : j ) 2 = β E ( k ) ( k ) ( k ) ( k ) ( k ) ( k ) ( k ) ( k ) ( k ) ( k ) ( E E j E j ± 1 E = E E i E = E j E ( | i − j | > 1 ) j j j j i n ) 2 = β 2 E ( k ) ( k ) ( k ) ( k ) ( k ) ( k ) ( k ) ( k ) ( k ) ( k ) ( E E n − 1 E n E n − 1 = β 1 E E i E = E n E ( i < n − 1 ) n n n − 1 i • These algebraic relations are well-defined for all β . • B n , k is a quotient of TL ( 1 ) n . Its generators satisfy more relations.

  19. Loop model Boundary algebras Virasoro modules Scaling limit Conclusion Extra relations: generic case • Extra relations for β generic: � k = 1: ( e n e n − 1 − 1 ) e n = 0 � k = 2: ( e n e n − 1 e n − 2 − β e n − 2 + 1 )( e n e n − 1 − β ) e n = 0 � k = 3: e n e n − 1 e n − 2 e n − 3 e n e n − 1 e n − 2 e n e n − 1 e n + lower order terms = 0 � � Polynomial of degree ( k + 1 )( k + 2 ) � Any k : in the e j = 0 2 • These are the full set of algebraic relations defining B n , k . • The lattice Kac modules K d n , k are really modules over B n , k .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend