k
play

K Karlsruhe Institute of Technology (KIT) - PowerPoint PPT Presentation

K Karlsruhe Institute of Technology (KIT) 2018 2018 8 7 3 cm Discovery of Kaon V particle K 0 S 3 cm + Discovery of Pion


  1. K 中間子の精密測定で探る物理 北原 鉄平 Karlsruhe Institute of Technology (KIT) 基研研究会 素粒子物理学の進展 2018 2018 年 8 月 7 日

  2. 3 cm

  3. Discovery of Kaon “V particle” K 0 S 3 cm π + Discovery of Pion Surprisingly for me, pion & kaon have been discovered in the same year π −

  4. KAON A GOLDEN CHANNEL ✦ Discovery of CP violation [’64] ✦ GIM mechanism and prediction of charm [’64-70] → November Revolution( J / ψ )[’74] ✦ CKM matrix and prediction of beauty/truth [’73] Probing new physics by precision measurements of kaon decays /38 Teppei Kitahara : Karlsruhe Institute of Technology, PPP2018, YITP, August 7, 2018

  5. Kaon! Kaon physics is still an exciting field! Discovery channel → Precision physics : FCNC and CP violation can be probed precisely using rare decay channels Br~ O (10 -11 ) There are many promising on-going experiments for kaon precisions; LHCb / NA62 / KOTO / KLOE-2 / TREK One can test our understanding of the SM, unitarity of CKM and ChPT, and also probe physics beyond the SM Probing new physics by precision measurements of kaon decays 2 /38 Teppei Kitahara : Karlsruhe Institute of Technology, PPP2018, YITP, August 7, 2018

  6. Lattice [RBC-UKQCD] perturbative calculations collider meson effective theory (ChPT/dual QCD) search ε ’ K and ε K discrepancies? B < K L → ππ correlations could give stronger constraints LFUV CP -violating - FCNC (+) (+) K S → μ + μ - K L → π 0 νν reduce Th reduce Th uncertainty K S → π 0 μ + μ - uncertainty K L → π 0 l + l - K S → μ + μ - γ CPV decay Understanding K S → 4 l less sensitive because of LD contributions of ChPT K S → π + π - e + e -

  7. Kaon in LHCb LHCb experiment has been designed for efficient reconstructions of b and c Huge production of strangeness [ O ( 10 13 ) /fb -1 K 0S ] is suppressed by its trigger efficiency [ ε ~1-2% @LHC Run- I , ε ~18% @LHC Run- II ] LHCb Upgrade (LS2=Phase I upgrade, LS4=Phase II upgrade) could realize high efficiency for K 0S [ ε ~90% @LHC Run- III ] [M. R. Pernas, HL/HE LHC meeting, FNAL, 2018] In LHC Run- III and HL-LHC, we could probe the ultra rare decay Br~ O ( 10 -11 ) Probing new physics by precision measurements of kaon decays 4 /38 Teppei Kitahara : Karlsruhe Institute of Technology, PPP2018, YITP, August 7, 2018

  8. Kaon & CP violation - Kaon = bound state of sd and CP transformation 0 i , 0 i = | K 0 i , CP | K 0 i = | K CP | K 1 ⇣ ⌘ 0 i CP | K 0 ± i = ±| K 0 where | K 0 | K 0 i ± | K p ± i , ± i ⌘ 1,2 1,2 1,2 2 are CP -eigenstates but are not mass-eigenstates, because nature does | K 0 ± i 1,2 not respect the CP symmetry 1 Short-lived mass eigenstate | K 0 + i + ✏ K | K 0 � � | K S i ' − i 1 2 p 1 + | ✏ K | 2 1 Long-lived mass eigenstate � | K 0 − i + ✏ K | K 0 � | K L i ' + i 2 1 p 1 + | ✏ K | 2 Lifetime difference is so large and mass difference is small (opposite from B 0 ) τ S = 0 . 89 × 10 − 10 sec. c τ S = 2 . 6 cm ∆ M K = 3 . 4 × 10 − 12 MeV τ L = 511 × 10 − 10 sec. c τ L = 15 m Probing new physics by precision measurements of kaon decays 5 /38 Teppei Kitahara : Karlsruhe Institute of Technology, PPP2018, YITP, August 7, 2018

  9. Kaon & CP violation K 0 → π π J ( K 0 ) = J (2 π ) = S (2 π ) + L (2 π ) → L = 0 =0 =0 2 π state can not carry angular momentum → CP (2 π ) = +1 = CP even The CP violation was measured by A ( K L (almost CP odd) ! π + π − ( CP even)) / ε K = O (10 − 3 ) 6 = 0 [Christenson, Cronin, Fitch, Turlay, '64 with Nobel prize] No missing energy = K L K L beam π + e - ν , π + μ - ν π + π - π 0 invariant mass Probing new physics by precision measurements of kaon decays 6 /38 Teppei Kitahara : Karlsruhe Institute of Technology, PPP2018, YITP, August 7, 2018

  10. K 0 → π + π -, π 0 π 0

  11. K 0 → ππ : two types of CP violation two types of CP violation : indirect CPV ε K & direct CPV ε ’ K : [Christenson, Cronin, Fitch, Turlay ’64 � K L → π + π � � with ε K = O (10 � 3 ) ∝ ε K + ε 0 A K with Nobel prize] K = O (10 � 6 ) � K L → π 0 π 0 � ε 0 ∝ ε K − 2 ε 0 A [NA48/CERN and KTeV/FNAL ’99] K 1 − B ( K L → π 0 π 0 ) B ( K S → π + π � ) ✓ ε 0 ◆  � = 1 K = O (10 � 3 ) Re 6 B ( K S → π 0 π 0 ) B ( K L → π + π � ) ε K x V td V td u,c,t x Δ S=1 d Δ S=2 S d S Direct CP violation Indirect CP violation g/ γ /Z u,c,t u,c,t x [Kaon mixing] penguin and W-box q q d S W box 0 K 0 ← → K q S ε 0 K ∝ Im [ V ⇤ ts V td ] ⇥ ts V td ) 2 ⇤ ε K ∝ Im ( V ∗ q u,c,t x q d Probing new physics by precision measurements of kaon decays 7 /38 Teppei Kitahara : Karlsruhe Institute of Technology, PPP2018, YITP, August 7, 2018

  12. ε K discrepancy SM prediction of the indirect CP violation ε K is sensitive to | V cb | ε K (LD) = -3.6(2.0)% × ε K (SD) SM [Buras,Guadagnoli, Isidori ’10] ε K = ε K (SD) + ε K (LD) ε K (SD) ∝ Im λ t [ − Re λ t η tt S 0 ( x t ) + (Re λ t − Re λ c ) η ct S 0 ( x c , x t ) + Re λ c η cc S 0 ( x c )] ηλ 2 | V cb | 2 ⇥ | V cb | 2 (1 � ¯ ⇤ ' ¯ ρ ) η tt S 0 ( x t ) + η ct S 0 ( x c , x t ) � η cc S 0 ( x c ) Wolfenstein parametrization Leading contribution is proportional to | V cb | 4 | ε K | predictions inclusive | V cb | (±1 σ error bar) Theoretical prediction of ε K with errors are inclusive | V cb | is consistent with the exclusive | V cb | dominated by measured value, while there is 4.0 σ - | V cb |, η , η ct , η cc tension in exclusive | V cb | case measured value [LANL-SWME, 1710.06614] Wolfenstein parameters are determined by 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 the angle-only fit | ε K | × 10 3 | ϵ K |× 10 3 Probing new physics by precision measurements of kaon decays 8 /38 Teppei Kitahara : Karlsruhe Institute of Technology, PPP2018, YITP, August 7, 2018

  13. ε K discrepancy ~ | V cb | discrepancy [HFLAV average, 1612.07233] [Bigi, Gambino, Schacht ‘17] Inclusive 3 σ 十 data: Belle, 1702.01521 exclusive assuming a simplified FF parametrization ( CLN ) Recent progress on exclusive | V cb | in B → D * transition Model independent form factors parametrization [Boyd-Grinstein-Lebed ( BGL ) ’97] Error will be reduced B → D ∗ ` ¯ ⌫ | V cb | excl . 40 . 6 +1 . 2 × 10 − 3 � � [Bigi, Gambino, Schacht ‘17] BGL = − 1 . 3 by future lattice result [Belle, + Similar recent progress [Grinstein, Kobach ‘17, Bernlochner, Ligeti, Papucci, Robinson ’17] 1702.01521] Probing new physics by precision measurements of kaon decays 9 /38 Teppei Kitahara : Karlsruhe Institute of Technology, PPP2018, YITP, August 7, 2018

  14. Formulae of CP violating decay Precise definitions of K → ππ system time-dependence of K L -K S interference ✏ K ≡ 2 ⌘ + − + ⌘ 00 η 00 ≡ A ( K L → π 0 π 0 ) ∈ C exp. · e 43 . 52 � i 2 . 220 · 10 − 3 � � = 3 A ( K S → π 0 π 0 ) η + − ≡ A ( K L → π + π − ) K ≡ ⌘ + � − ⌘ 00 exp. · e 43 . 51 � i � 2 . 232 · 10 − 3 � ✏ 0 = ∈ C A ( K S → π + π − ) 3 Pion isospin decomposition of the physical states r r 1 2 | π 0 π 0 i = 3 | ππ i I =0 � 3 | ππ i I =2 Two pions ( I =1) can decompose into I =0,2 states with CG coefficients r r 2 1 | π + π − i = 3 | ππ i I =0 + 3 | ππ i I =2 ✏ 0 ≡ A ( K L → ( ⇡⇡ ) 0 ) 1 A ( K L ! ( ⇡⇡ ) 2 ) ! ⌘ A ( K S ! ( ⇡⇡ ) 2 ) p ✏ 2 ⌘ A ( K S ! ( ⇡⇡ ) 0 ) ⌧ ✏ 0 A ( K S ! ( ⇡⇡ ) 0 ) ⌧ ✏ 0 A ( K S → ( ⇡⇡ ) 0 ) 2 K = ✏ 2 + ! √ 2 ( ✏ 2 − ✏ 0 ) + O ( ✏ 0 ! 2 ) ✏ 0 2 ✏ 2 ! + O ( ✏ 0 ! 2 ) then ✏ K = ✏ 0 − √ Probing new physics by precision measurements of kaon decays 10 /38 Teppei Kitahara : Karlsruhe Institute of Technology, PPP2018, YITP, August 7, 2018

  15. Formulae of CP violating decay cont. Then, ✏ 0 ✓ ◆ ⇣ √ ⌘ � 1 ✏ 2 + ! K + O ( ! 2 ) = 2 ( ✏ 2 − ✏ 0 ) 2 ✏ 2 ! √ ✏ 0 − ✏ K 1  A ( K L → ( ⇡⇡ ) 2 ) A ( K L → ( ⇡⇡ ) 0 ) − A ( K S → ( ⇡⇡ ) 2 ) � + O ( ! 2 ) = √ A ( K S → ( ⇡⇡ ) 0 ) 2 K L and K S also can be decomposed into isospin eigenstates ( ) 0 K 0 , K 1 1 ⇣ ⌘ 0 i (1 + δ ✏ ) | K 0 i + (1 � δ ✏ ) | K | K S i ⌘ p p 2 1 + | δ ✏ | 2 1 1 ⇣ ⌘ 0 i (1 + δ ✏ ) | K 0 i � (1 � δ ✏ ) | K | K L i ⌘ p p 2 1 + | δ ✏ | 2 Let us define isospin amplitudes A ( K 0 → ( ππ ) I ) ≡ A I e i δ I δ I is a strong phase, which comes from the final pion state re-scattering 0 → ( ππ ) I ) ≡ ¯ A I e i δ I = A ∗ I e i δ I A ( K A ( K L → ( ππ ) 2 ) A ( K L → ( ππ ) 0 ) = e i ( � 2 − � 0 ) i Im( A 2 ) + δ ✏ Re( A 2 ) then i Im( A 0 ) + δ ✏ Re( A 0 ) A ( K S → ( ππ ) 2 ) A ( K S → ( ππ ) 0 ) = e i ( � 2 − � 0 ) Re( A 2 ) + i δ ✏ Im( A 2 ) Re( A 0 ) + i δ ✏ Im( A 0 ) Probing new physics by precision measurements of kaon decays 11 /38 Teppei Kitahara : Karlsruhe Institute of Technology, PPP2018, YITP, August 7, 2018

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend