nlo event generation with herwig
play

NLO Event Generation with Herwig++ Simon Pl atzer DESY on behalf - PowerPoint PPT Presentation

NLO Event Generation with Herwig++ Simon Pl atzer DESY on behalf of the Herwig++ collaboration Simon Pl atzer (DESY) NLO Event Generation with Herwig++ 1 / 16 b b b b b b b b b b b b Overview. Dedicated approaches


  1. NLO Event Generation with Herwig++ Simon Pl¨ atzer DESY – on behalf of the Herwig++ collaboration – Simon Pl¨ atzer (DESY) NLO Event Generation with Herwig++ 1 / 16

  2. b b b b b b b b b b b b Overview. Dedicated approaches to NLO matching, largely hand-made or semi-automated. Many processes available in current release, well established. Muon charge asymmetry in W decays A µ 0 . 3 ATLAS data Herwig++ LO 0 . 25 Azimuthal angle difference between the first and second jet Herwig++ Powheg d σ /d ∆ φ 12 [pb] 0 . 2 NLO LO+PS 0 . 15 NLO+PS 0 . 1 0 . 05 10 1 0 1 . 4 MC/data 1 . 2 1 0 0 . 5 1 1 . 5 2 2 . 5 3 0 . 8 ∆ φ 12 0 . 6 Z +jet 0 0 . 5 1 1 . 5 2 | η µ | pp → W [SP & S. Gieseke – Eur.Phys.J. C72 (2012) 2187] [K. Hamilton et al. – JHEP 0904 (2009) 116] Change in paradigm: Need for an automated, fully integrated framework. → Uncertainties and merging require full control of fixed-order input. Simon Pl¨ atzer (DESY) NLO Event Generation with Herwig++ 2 / 16

  3. Dedicated NLO approaches: BSM Decay Chains. Powheg matching integrated with fexible and generic Herwig++ BSM infrastructure. [P. Richardson, A. Wilcock – Eur.Phys.J. C74 (2014) 2713] Jet pair mass in RS graviton decay. p ⊥ distribution in CMSSM squark decay. 10 − 5 d σ /d m jj [ fb/GeV ] d σ /d p T ,2 [ fb/GeV ] 0 . 07 Herwig++ PO Herwig++ PO Herwig++ LO Herwig++ LO 0 . 06 0 . 05 10 − 6 0 . 04 0 . 03 0 . 02 0 . 01 10 − 7 0 1 . 4 1 . 4 1 . 2 1 . 2 Ratio Ratio 1 1 0 . 8 0 . 8 0 . 6 0 . 6 1000 1200 1400 1600 1800 2000 2200 2400 0 50 100 150 200 250 300 350 400 m jj [ GeV ] p T ,2 [ GeV ] Simon Pl¨ atzer (DESY) NLO Event Generation with Herwig++ 3 / 16

  4. Outline. – (N)LO Matrix Elements for Herwig++ with Matchbox – Matching Validation & Systematics – Shower & Matching Uncertainties – Further development: BSM, EW corrections, NLO merging – Summary & Outlook Simon Pl¨ atzer (DESY) NLO Event Generation with Herwig++ 4 / 16

  5. Matchbox Overview. � |M n , 0 � � � �� � � � |M n , 0 � � � |M n , 0 � , |M n , 1 � � σ NLO = d σ LO + d σ V + d σ A |M ij n , 0 | 2 |M n , 0 | 2 2R e ( �M n , 0 |M n , 1 � ) n n 1 � � �� � � |M n , 0 � � P (˜ q ) , D ( p ⊥ ) + d σ PS − d σ A |M ij n , 0 | 2 R ME ( p ⊥ ) n +1 � |M n +1 , 0 � � � � � P (˜ q ) , D ( p ⊥ ) �� + d σ R − d σ PS |M n +1 , 0 | 2 R ME ( p ⊥ ) n +1 Interfaces at amplitude level Interfaces at squared amplitude level – Color bases provided, including interface to ColorFull . – Dedicated interfaces. [M. Sj¨ odahl, SP] [HEJ & SP] [nlojet++ & J. Kotanski, J. Katzy, SP] – Spinor helicity library and caching facilities. – BLHA2. – MadGraph5. [GoSam & J. Bellm, S. Gieseke, SP, C. Reuschle] [MadGraph & J. Bellm, S. Gieseke, SP, A. Wilcock] [NJet & SP] [OpenLoops & J. Bellm, S. Gieseke] – Some in-house calculations and parts of HJets++ . [VBFNLO & K. Arnold, S. Gieseke, SP] [F. Campanario, T. Figy, SP, M. Sj¨ odahl] Matchbox infrastructure Shower plugins based on [SP & S. Gieseke – Eur.Phys.J. C72 (2012) 2187] matching details & uncertainties [in preparation] – Dipole shower D ( p ⊥ ). – Process generation and bookkeeping, integration. – Angular ordered shower P (˜ q ). – Automated Catani-Seymour dipole subtraction. – ME correction R ME ( p ⊥ ), including adaptive sampling. – Diagram-based mutli-channel phase space. Simon Pl¨ atzer (DESY) NLO Event Generation with Herwig++ 5 / 16

  6. Matchbox Validation. Extensive validation against e.g. MCFM [N. Fischer, D. Rauch, C. Reuschle] ∆ y between the WZ boson pair Antitop Quark Transverse Momentum p T ,¯ t d σ /d ∆ y [pb] d σ / dp T ,¯ t 10 3 MCFM MCFM 10 1 Herwig + GoSam H++ & GoSam 10 2 H++ & MadGraph 10 1 1 1 10 − 1 10 − 2 1 . 4 1 . 4 1 . 2 1 . 2 Ratio Ratio 1 1 0 . 8 0 . 8 0 . 6 0 . 6 0 1 2 3 4 5 0 100 200 300 400 500 600 700 800 900 ∆ y p T ,¯ t [GeV] Various internal cross checks: Subtraction checks, pole cancellation. u → e + e − gg Singularity cancellation in u ¯ 1/ ǫ pole cancellation in pp → 3 jets D / | M | 2 occurence in % 10 1 1 . 8 du → dug 1 . 6 gu → uug 1 . 4 1 1 . 2 1 0 . 8 10 − 1 0 . 6 0 . 4 0 . 2 10 − 2 0 10 − 2 10 − 1 10 1 1 - 16 - 14 - 12 - 10 - 8 - 6 √ s 14 log 10 ( ∆ ) pp → Z + jet (GoSam) pp → 3 jets (NJet) Simon Pl¨ atzer (DESY) NLO Event Generation with Herwig++ 6 / 16

  7. NLO Calculations with Matchbox. Electroweak H +Jets production with HJets++ [F. Campanario, T. Figy, SP, M. Sj¨ odahl – PRL 111 (2013) 211802] – Employs all of Matchbox’s infrastructure for a hadron collider 2 → 4 process. – Hybrid interfaces of amplitude and squared amplitude infrastructure, internal cross checks possible. Transverse momentum of the third jet Transverse momentum of the third jet 10 2 d σ /d p ⊥ ,3 [fb/GeV] d σ /d p T ,3 [fb/GeV] 10 1 LO LO NLO NLO 10 1 1 10 − 1 1 10 − 2 10 − 1 10 − 3 10 − 2 HJets++ HJets++ 3 . 5 10 − 4 1 . 4 3 2 . 5 1 . 2 K 2 K 1 1 . 5 0 . 8 1 0 . 6 0 . 5 20 40 60 80 100 120 140 160 180 200 20 40 60 80 100 120 140 160 180 200 p ⊥ ,3 [GeV] p T ,3 [GeV] Inclusive cuts. VBF cuts. pp → H + 3 jets @ 14 TeV – inlcudes all VBF and Higgs-strahlung contributions Have pp → H + 2 jets available as well. [validated against Ciccolini, Denner, Dittmaier – Phys.Rev.Lett. 99 (2007) 161803] Simon Pl¨ atzer (DESY) NLO Event Generation with Herwig++ 7 / 16

  8. Matching Validation & Systematics. Compare fixed order, unshowered S and H events, and full simulation. Z boson transverse momentum d σ /d p ⊥ ( Z ) GeV/pb 10 2 LO + Dipoles Prime validation: inclusive Z . NLO + Dipoles 10 1 NLO NLO + Dipoles H 1 Non-trivial application: Z plus jet 10 − 1 10 − 2 R separation of Z and first jet 10 − 3 d σ /d ∆ R ( Z , j ) 1/pb Herwig++ 10 4 Herwig++ LO + Dipoles OpenLoops / MadGraph / ColorFull OpenLoops / MadGraph / ColorFull 10 − 4 LO 10 3 1 . 4 NLO + Dipoles Ratio to NLO NLO 1 . 2 10 2 NLO + Dipoles H 1 NLO + Dipoles S 10 1 0 . 8 0 . 6 1 20 40 60 80 100 120 140 p ⊥ ( Z ) /GeV 10 − 1 Z boson rapidity 10 − 2 d σ /d y ( Z ) 1/pb 0 2 4 6 8 10 Herwig++ 180 ∆ R ( Z , j ) OpenLoops / MadGraph / ColorFull 160 Transverse momentum of first jet 140 10 1 d σ /d p ⊥ ( j ) GeV/pb 120 LO + QTilde LO + QTilde 100 1 LO LO NLO + QTilde 80 NLO + QTilde 10 − 1 NLO NLO + QTilde H 60 NLO + QTilde H NLO + QTilde S 10 − 2 40 NLO + QTilde S 20 10 − 3 0 1 . 4 10 − 4 Ratio to NLO 1 . 2 10 − 5 1 0 . 8 100 200 300 400 500 600 700 800 900 1000 p ⊥ ( j ) 0 . 6 - 6 - 4 - 2 0 2 4 6 y ( Z ) Simon Pl¨ atzer (DESY) NLO Event Generation with Herwig++ 8 / 16

  9. Matching Validation & Systematics: Powheg-type. [A. Wilcock, P. Richardson, SP – work in progress] Powheg-type matching smoothly integrated into Matchbox – Adaptive sampling of ME correction Sudakov [SP – Eur.Phys.J. C72 (2012) 1929] – Various profile scale choices and uncertainty estimates – Can check impact of truncated showering Number events 10 6 Number events 10 5 Matchbox truncated shower POWHEGBOX no truncated shower Herwig++ 10 5 10 4 10 4 10 3 10 3 1 . 4 1 . 4 1 . 2 1 . 2 Ratio Ratio 1 1 0 . 8 0 . 8 0 . 6 0 . 6 0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 p T , ll [ GeV ] p T , ll [ GeV ] Simon Pl¨ atzer (DESY) NLO Event Generation with Herwig++ 9 / 16

  10. Shower & Matching Uncertainties. Shower uncertainties until now poorly understood. – Various scales in the game: µ R , µ F , µ Q . – Role of µ Q not a priory clear (no variable hard scale for a.o. showers, only p ⊥ veto) – µ R , µ F in hard process vs. in the shower? Matching is a way more complicated setting! – Some expectations confirmed in matched setups. – Surprises in uncertainties for higher jet multiplicities. – Need to profile hard emission to avoid NNLO jumps. Upshot: Cross-benchmark between different showers with and without matching. Hopefully more insight soon – needs close connection with resummation community. Simon Pl¨ atzer (DESY) NLO Event Generation with Herwig++ 10 / 16

  11. µ Q variations and profile scales. Important to validate uncertainties at leading order : Matching may hide important details. Do we see what we expect? Transverse momentum of leading jet p d σ /d p ⊥ ( jet 1 ) [pb/GeV] 10 1 power shower natural shower natural shower hfact profile hfact profile resummation profile resummation profile 1 1 leading order 0 . 8 0 . 6 10 − 1 0 . 4 0 . 2 10 − 2 0 0 50 100 150 200 250 10 2 10 3 q / GeV p ⊥ ( jet 1 ) [GeV] log 10 ( k ⊥ jet resolution 1 → 2 [GeV]) Separation between Z boson and leading jet 10 3 d σ /d log 10 ( d 12 /GeV ) [pb] d σ /d ∆ R ( Z, 1 st jet ) [pb] power shower natural shower 10 2 hfact profile 10 2 resummation profile 10 1 10 1 power shower natural shower hfact profile 1 resummation profile 1 leading order 0 . 5 1 1 . 5 2 2 . 5 3 3 . 5 1 2 3 4 5 6 7 log 10 ( d 12 /GeV ) ∆ R ( Z, 1 st jet ) Full benchmark of uncertainties in progress – S. Gieseke & SP Simon Pl¨ atzer (DESY) NLO Event Generation with Herwig++ 11 / 16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend