joint source channel secrecy using hybrid coding
play

Joint Source-Channel Secrecy Using Hybrid Coding Eva Song, Paul - PowerPoint PPT Presentation

Joint Source-Channel Secrecy Using Hybrid Coding Eva Song, Paul Cuff, and H. Vincent Poor Department of Electrical Engineering Princeton University June 19, 2015 A source-channel coding setting t = 1 , . . . , n S t Decoder g n Y n S n X n


  1. Joint Source-Channel Secrecy Using Hybrid Coding Eva Song, Paul Cuff, and H. Vincent Poor Department of Electrical Engineering Princeton University June 19, 2015

  2. A source-channel coding setting t = 1 , . . . , n ˆ S t Decoder g n Y n S n X n P YZ | X Encoder f n ˇ Z n S t Eve S t − 1 Song, Cuff, Poor (Princeton University) Joint Source-Channel Secrecy June 19, 2015 2 / 22

  3. A source-channel coding setting t = 1 , . . . , n ˆ S t Decoder g n Y n S n X n P YZ | X Encoder f n ˇ Z n S t Eve S t − 1 Quality of reconstruction: d ( S n , ˆ S n ), d ( S n , ˇ S n ) Song, Cuff, Poor (Princeton University) Joint Source-Channel Secrecy June 19, 2015 2 / 22

  4. A source-channel coding setting t = 1 , . . . , n ˆ S t Decoder g n Y n S n X n P YZ | X Encoder f n ˇ Z n S t Eve S t − 1 Quality of reconstruction: d ( S n , ˆ S n ), d ( S n , ˇ S n ) Why causal disclosure? ◮ Stronger formulation: to the favor of eavesdropper ◮ Can generalize equivocation Song, Cuff, Poor (Princeton University) Joint Source-Channel Secrecy June 19, 2015 2 / 22

  5. In this talk... Song, Cuff, Poor (Princeton University) Joint Source-Channel Secrecy June 19, 2015 3 / 22

  6. In this talk... Design source-channel coding schemes for ( D b , D e ) s.t. � � d ( S n , ˆ ◮ E S n ) ≤ n D b t =1 E [ d ( S n , ˇ ◮ min { P ˇ S n )] ≥ n D e St | ZnSt − 1 } n Song, Cuff, Poor (Princeton University) Joint Source-Channel Secrecy June 19, 2015 3 / 22

  7. In this talk... Design source-channel coding schemes for ( D b , D e ) s.t. � � d ( S n , ˆ ◮ E S n ) ≤ n D b t =1 E [ d ( S n , ˇ ◮ min { P ˇ S n )] ≥ n D e St | ZnSt − 1 } n Analysis uses The Likelihood Encoder ◮ Total variation distance ◮ Soft-covering lemma Song, Cuff, Poor (Princeton University) Joint Source-Channel Secrecy June 19, 2015 3 / 22

  8. What is a likelihood encoder? a stochastic source encoder: f n : X n �→ M X n Y n M Decoder g n Encoder f n Song, Cuff, Poor (Princeton University) Joint Source-Channel Secrecy June 19, 2015 4 / 22

  9. What is a likelihood encoder? a stochastic source encoder: f n : X n �→ M X n Y n M Decoder g n Encoder f n Given a codebook { y n ( m ) } m , m ∈ [1 : 2 nR ] a joint distribution P XY the likelihood function for each codeword: L ( m | x n ) � P X n | Y n ( x n | y n ( m )) = � P X | Y ( x n | y n ( m )) the likelihood encoder determines the message index according to: L ( m | x n ) P M | X n ( m | x n ) = m ′ ∈ [1:2 nR ] L ( m ′ | x n ) ∝ L ( m | x n ) . � Song, Cuff, Poor (Princeton University) Joint Source-Channel Secrecy June 19, 2015 4 / 22

  10. Warm up – soft-covering lemma Lemma Given 1) P UXZ 2) random C ( n ) of sequences U n ( m ) ∼ � n t =1 P U ( u t ) , m ∈ [1 : 2 nR ] Song, Cuff, Poor (Princeton University) Joint Source-Channel Secrecy June 19, 2015 5 / 22

  11. Warm up – soft-covering lemma Lemma Given 1) P UXZ 2) random C ( n ) of sequences U n ( m ) ∼ � n t =1 P U ( u t ) , m ∈ [1 : 2 nR ] Let n k 1 � � P MX n Z k ( m , x n , z k ) � P X | U ( x t | U t ( m )) P Z | XU ( z t | x t , U t ( m )) 2 nR t =1 t =1 n k � � P X n Z k � P X ( x t ) P Z | X ( z t | x t ) t =1 t =1 Song, Cuff, Poor (Princeton University) Joint Source-Channel Secrecy June 19, 2015 5 / 22

  12. Warm up – soft-covering lemma Lemma Given 1) P UXZ 2) random C ( n ) of sequences U n ( m ) ∼ � n t =1 P U ( u t ) , m ∈ [1 : 2 nR ] Let n k 1 � � P MX n Z k ( m , x n , z k ) � P X | U ( x t | U t ( m )) P Z | XU ( z t | x t , U t ( m )) 2 nR t =1 t =1 n k � � P X n Z k � P X ( x t ) P Z | X ( z t | x t ) t =1 t =1 If R > I ( X ; U ) , then E C n �� � � � P X n Z k − P X n Z k ≤ exp( − γ n ) → n 0 , � TV for any β < R − I ( X ; U ) I ( Z ; U | X ) , k ≤ β n, γ > 0 depending on this gap. Song, Cuff, Poor (Princeton University) Joint Source-Channel Secrecy June 19, 2015 5 / 22

  13. Problem setup t = 1 , . . . , n ˆ S t Decoder g n Y n S n X n P YZ | X Encoder f n ˇ Z n S t Eve S t − 1 i.i.d. source S n ∼ � n t =1 P S ( s t ) memoryless broadcast channel � n t =1 P YZ | X ( y t , z t | x t ) Encoder f n : S n �→ X n (possibly stochastic) Legitimate receiver decoder g n : Y n �→ ˆ S n (possibly stochastic) S t | Z n S t − 1 } n Eavesdropper decoders { P ˇ t =1 Song, Cuff, Poor (Princeton University) Joint Source-Channel Secrecy June 19, 2015 6 / 22

  14. Definition Definition A distortion pair ( D b , D e ) is achievable if there exists a sequence of source-channel encoders and decoders ( f n , g n ) such that E [ d ( S n , ˆ S n )] ≤ n D b and E [ d ( S n , ˇ S n )] ≥ n D e . min St | ZnSt − 1 } n { P ˇ t =1 Song, Cuff, Poor (Princeton University) Joint Source-Channel Secrecy June 19, 2015 7 / 22

  15. We consider Scheme O – Operationally separate SC coding [Schieler et al. Allerton 2012] Scheme I – Joint SC coding using Hybrid Coding Scheme II – Joint SC coding using superposition Hybrid Coding Song, Cuff, Poor (Princeton University) Joint Source-Channel Secrecy June 19, 2015 8 / 22

  16. Scheme O – operational separate Theorem A distortion pair ( D b , D e ) is achievable if I ( S ; U 1 ) < I ( U 2 ; Y ) I ( S ; ˆ S | U 1 ) < I ( V 2 ; Y | U 2 ) − I ( V 2 ; Z | U 2 ) � � d ( S , ˆ D b ≥ E S ) D e ≤ η min E [ d ( S , a )] + (1 − η ) min t ( u 1 ) E [ d ( S , t ( U 1 ))] a ∈ ˆ S for some distribution P S P ˆ S | S P U 1 | ˆ S P U 2 P V 2 | U 2 P X | V 2 P YZ | X , where η = [ I ( U 2 ; Y ) − I ( U 2 ; Z )] + . I ( S ; U 1 ) Song, Cuff, Poor (Princeton University) Joint Source-Channel Secrecy June 19, 2015 9 / 22

  17. Hybrid coding U n ( ˆ U n ( M ) M ) ˆ S n X n Y n S n P X | SU P YZ | X φ ( u , y ) Likelihood Encoder Channel Decoder at least optimal for P2P communication [Minero et al.] achieves best known bounds in multiuser settings Secrecy: need stochastic symbol-by-symbol mapping Song, Cuff, Poor (Princeton University) Joint Source-Channel Secrecy June 19, 2015 10 / 22

  18. Scheme I – basic hybrid coding Theorem A distortion pair ( D b , D e ) is achievable if I ( U ; S ) I ( U ; Y ) < D b ≥ E [ d ( S , φ ( U , Y ))] D e ≤ β min ψ 0 ( z ) E [ d ( S , ψ 0 ( Z ))] +(1 − β ) min ψ 1 ( u , z ) E [ d ( S , ψ 1 ( U , Z ))] where � [ I ( U ; Y ) − I ( U ; Z )] + � β = min , 1 I ( S ; U | Z ) for some distribution P S P U | S P X | SU P YZ | X and function φ ( · , · ) . Song, Cuff, Poor (Princeton University) Joint Source-Channel Secrecy June 19, 2015 11 / 22

  19. Scheme I – achievability scheme Fix distribution P S P U | S P X | SU P YZ | X Codebook generation: Independently generate 2 nR sequences in U n according to � n t =1 P U ( u t ) and index by m ∈ [1 : 2 nR ] Song, Cuff, Poor (Princeton University) Joint Source-Channel Secrecy June 19, 2015 12 / 22

  20. ✶ Scheme I – achievability scheme – continued Encoder ◮ likelihood encoder P LE ( m | s n ) with L ( m | s n ) = P S n | U n ( s n | u n ( m )) ◮ produces channel input through a random transformation: � n t =1 P X | SU ( x t | s t , U t ( m )) Song, Cuff, Poor (Princeton University) Joint Source-Channel Secrecy June 19, 2015 13 / 22

  21. Scheme I – achievability scheme – continued Encoder ◮ likelihood encoder P LE ( m | s n ) with L ( m | s n ) = P S n | U n ( s n | u n ( m )) ◮ produces channel input through a random transformation: � n t =1 P X | SU ( x t | s t , U t ( m )) Decoder ◮ good channel decoder P D 1 ( ˆ m | y n ) w.r.t. codebook { u n ( a ) } a and memoryless channel P Y | U ◮ deterministic mapping φ n ( u n , y n ) is the concatenation of { φ ( u t , y t ) } n t =1 : s n = φ n ( u n ( ˆ s n | ˆ m , y n ) � ✶ { ˆ m ) , y n ) } P D 2 (ˆ Song, Cuff, Poor (Princeton University) Joint Source-Channel Secrecy June 19, 2015 13 / 22

  22. Analysis outline – at legitimate receiver System induced distribution P Idealized distribution Q Q MU n S n X n Y n Z n ( m , u n , s n , x n , y n , z n ) n 1 2 nR ✶ { u n = U n ( m ) } � � P S | U ( s t | u t ) t =1 n n � � P X | SU ( x t | s t , u t ) P YZ | X ( y t , z t | x t ) . t =1 t =1 soft-covering: R > I ( U ; S ) ⇒ P ≈ Q channel coding: R ≤ I ( U ; Y ) ⇒ � � �� d ( S n , ˆ S n ) E C ( n ) E P ≤ E P [ d ( S , φ ( U , Y ))] + δ n Song, Cuff, Poor (Princeton University) Joint Source-Channel Secrecy June 19, 2015 14 / 22

  23. Analysis outline – at eavesdropper auxiliary distribution n i Q ( i ) ˇ � � S i Z n ( s i , z n ) � P Z ( z t ) P S | Z ( s j | z j ) t =1 j =1 Q ( i ) soft-covering: R > I ( Z ; U ) ⇒ ˇ Z n S i ≈ Q Z n S i i can go up to β n , for any β < R − I ( U ; Z ) I ( S ; U | Z ) phase transition in distortion ◮ before β n : � � � k ◮ min { ψ 0 i ( s i − 1 , z n ) } i E P 1 i =1 d ( S i , ψ 0 i ( S i − 1 , Z n )) ≥ k min ψ 0 ( z ) E P [ d ( S , ψ 0 ( Z ))] − ǫ n ◮ after β n : � � � n ◮ min { ψ 1 i ( s i − 1 , z n ) } E P 1 i = j d ( S i , ψ 1 i ( S i − 1 , Z n )) ≥ k min ψ 1 ( u , z ) E P [ d ( S , ψ 1 ( U , Z ))] − ǫ n Song, Cuff, Poor (Princeton University) Joint Source-Channel Secrecy June 19, 2015 15 / 22

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend