inverse problems with l 1 data fitting
play

Inverse problems with L 1 data fitting Christian Clason, Bangti JIN, - PowerPoint PPT Presentation

Mathematical Optimization and INSTITUTE OF MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Inverse problems with L 1 data fitting Christian Clason, Bangti JIN, Karl Kunisch Institute for Mathematics and Scientific


  1. Mathematical Optimization and INSTITUTE OF MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Inverse problems with L 1 data fitting Christian Clason, Bangti JIN, Karl Kunisch Institute for Mathematics and Scientific Computing Karl-Franzens-Universität Graz Applied Inverse Problems 2009 Wien, July 24, 2009 Problem formulation Solution of optimality system Parameter choice method Numerical results 1 / 35

  2. Mathematical Optimization and INSTITUTE OF MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Inverse problem Find x such that Kx = y δ K : L 2 (Ω) → L 2 (Ω) bounded linear operator Ω ⊂ R n bounded domain y δ ∈ L 2 (Ω) noisy measurement Impulsive noise (e.g., salt & pepper, random valued) Problem formulation Solution of optimality system Parameter choice method Numerical results 2 / 35

  3. Mathematical Optimization and INSTITUTE OF MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Inverse problem L 1 data fitting x ∈ L 2 � Kx − y δ � L 1 + α 2 � x � 2 ( P ) min L 2 More robust in the presence of outliers Applicable in image processing, signal processing (single pixel failure) Challenge: Nondifferentiable functional, noise level unknown Regularization assumes smooth solution; alternative: TV Problem formulation Solution of optimality system Parameter choice method Numerical results 3 / 35

  4. Mathematical Optimization and INSTITUTE OF MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Fenchel duality V , Y Banach spaces, topological duals V ∗ , Y ∗ Λ ∈ L ( V , Y ) , F : V → R ∪ {∞} , G : Y → R ∪ {∞} Fenchel conjugate of F : F ∗ : V ∗ → R ∪ {∞} F ∗ ( v ∗ ) = sup � v ∗ , v � V ∗ , V − F ( v ) v ∈ V Problem formulation Solution of optimality system Parameter choice method Numerical results 4 / 35

  5. Mathematical Optimization and INSTITUTE OF MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Fenchel duality Fenchel duality theorem F , G convex and lower semicontinuous ∃ v 0 ∈ V : F ( v 0 ) < ∞ , G (Λ v 0 ) < ∞ , G continuous at Λ v 0 : q ∈ Y ∗ −F ∗ (Λ ∗ q ) − G ∗ ( − q ) v ∈ V F ( v ) + G (Λ v ) = sup (FD) inf Extremality relations: v , q solutions of ( FD ) iff � Λ ∗ q ∈ ∂ F ( v ) , (ER) − q ∈ ∂ G (Λ v ) , Problem formulation Solution of optimality system Parameter choice method Numerical results 4 / 35

  6. Mathematical Optimization and INSTITUTE OF MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Dual problem Define F ( v ) = α F : L 2 → R , 2 � v � 2 L 2 , G : L 2 → R , G ( v ) = � v − y δ � L 1 , Λ : L 2 → L 2 , Λ v = Kv . Fenchel conjugates F ∗ ( q ) = 1 F ∗ : L 2 → R , 2 α � q � 2 L 2 , � � q , y δ � L 2 if � q � L ∞ ≤ 1 , G ∗ : L 2 → R ∪ {∞} , G ∗ ( q ) = ∞ if � q � L ∞ > 1 . Problem formulation Solution of optimality system Parameter choice method Numerical results 5 / 35

  7. Mathematical Optimization and INSTITUTE OF MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Dual problem Dual problem 1  2 α � K ∗ p � 2 L 2 − � p , y δ � L 2 min  ( P ∗ ) p ∈ L 2  s.t. � p � L ∞ ≤ 1 , Fenchel duality theorem: ( P ∗ ) has solution p α Solution not unique if ker K ∗ � = { 0 } ! Problem formulation Solution of optimality system Parameter choice method Numerical results 6 / 35

  8. Mathematical Optimization and INSTITUTE OF MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Dual problem Solutions x α , p α related by K ∗ p α = α x α , � 0 ≤ � Kx α − y δ , p − p α � L 2 , for all p ∈ L 2 with � p � L ∞ ≤ 1. Given a solution p α , unique solution of ( P ) : x α = 1 α K ∗ p α Problem formulation Solution of optimality system Parameter choice method Numerical results 7 / 35

  9. Mathematical Optimization and INSTITUTE OF MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Characterization of minimizer For all p ∈ L 2 , p ≥ 0: � Kx α − y δ , p � L 2 = if supp p ⊂ { x : | p α ( x ) | < 1 } , 0 � Kx α − y δ , p � L 2 if supp p ⊂ { x : p α ( x ) = 1 } , ≥ 0 � Kx α − y δ , p � L 2 ≤ if supp p ⊂ { x : p α ( x ) = − 1 } . 0 Interpretation: Box constraint on p α active where data is not attained by x α Sign of p α gives sign of noise Problem formulation Solution of optimality system Parameter choice method Numerical results 8 / 35

  10. Mathematical Optimization and INSTITUTE OF MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Regularization of dual problem 1  2 α � K ∗ p � 2 L 2 − � p , y δ � L 2 min  ( P ∗ ) p ∈ L 2  s.t. � p � L ∞ ≤ 1 , Non-differentiable problem replaced by smooth box-constrained problem Moreau-Yosida regularization for c > 0 ⇒ efficient solution by semismooth Newton method Superlinear convergence needs norm gap: Add smoothing term with β > 0 Problem formulation Solution of optimality system Parameter choice method Numerical results 9 / 35

  11. Mathematical Optimization and INSTITUTE OF MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Regularization of dual problem  1 2 α � K ∗ p � 2 L 2 − � p , y δ � L 2 min    p ∈ H 1 ( P ∗ c ) + 1 L 2 + 1 2 c � max ( 0 , c ( p − 1 )) � 2 2 c � min ( 0 , c ( p + 1 )) � 2    L 2 Non-differentiable problem replaced by smooth box-constrained problem Moreau-Yosida regularization for c > 0 ⇒ efficient solution by semismooth Newton method Superlinear convergence needs norm gap: Add smoothing term with β > 0 Problem formulation Solution of optimality system Parameter choice method Numerical results 9 / 35

  12. Mathematical Optimization and INSTITUTE OF MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Regularization of dual problem  1 L 2 + β 2 α � K ∗ p � 2 2 �∇ p � 2 L 2 − � p , y δ � L 2 min    p ∈ H 1 ( P ∗ β, c ) + 1 L 2 + 1 2 c � max ( 0 , c ( p − 1 )) � 2 2 c � min ( 0 , c ( p + 1 )) � 2    L 2 Non-differentiable problem replaced by smooth box-constrained problem Moreau-Yosida regularization for c > 0 ⇒ efficient solution by semismooth Newton method Superlinear convergence needs norm gap: Add smoothing term with β > 0 Problem formulation Solution of optimality system Parameter choice method Numerical results 9 / 35

  13. Mathematical Optimization and INSTITUTE OF MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Existence and convergence of minimizers Regularized problem 1 L 2 + β 2 α � K ∗ p � 2 2 �∇ p � 2 L 2 − � p , y δ � L 2 min p ∈ H 1 + 1 L 2 + 1 2 c � max ( 0 , c ( p − 1 )) � 2 2 c � min ( 0 , c ( p + 1 )) � 2 L 2 Strictly convex if ker K ∗ ∩ ker ∇ = { 0 } ⇒ Existence of unique minimizer p β, c Theorem (Convergence) H 1 L 2 L 2 p β, c − c →∞ p β − − → − β → 0 p α , − − ⇀ p β, c − β → 0 p c − − ⇀ Problem formulation Solution of optimality system Parameter choice method Numerical results 10 / 35

  14. Mathematical Optimization and INSTITUTE OF MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Optimality system (regularized)  1 α KK ∗ p c − β ∆ p c − y δ + λ c = 0 ,  λ c = max ( 0 , c ( p c − 1 )) + min ( 0 , c ( p c + 1 ))  Nonlinear equation for p c Pointwise max , min semismooth ⇒ solution by generalized Newton method Problem formulation Solution of optimality system Parameter choice method Numerical results 11 / 35

  15. Mathematical Optimization and INSTITUTE OF MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Semismoothness in function spaces X , Y Banach spaces, D ⊂ X open Definition F : D ⊂ X → Y Newton differentiable at x ∈ D , if there is neighborhood N ( x ) , G : N ( x ) → L ( X , Z ) � F ( x + h ) − F ( x ) − G ( x + h ) h � = o ( � h � ) Set { G ( s ) : s ∈ N ( x ) } Newton derivative of F at x. Definition F semismooth if N-differentiable and G ( s ) − 1 uniformly bounded. F semismooth ⇒ generalized Newton method G ( s k ) δ x = − F ( x k ) , s k ∈ N ( x k ) , converges locally superlinearly. Problem formulation Solution of optimality system Parameter choice method Numerical results 12 / 35

  16. Mathematical Optimization and INSTITUTE OF MATHEMATICS Applications in Biomedical Sciences AND SCIENTIFIC COMPUTING Semismoothness of projection operator Projection operator P ( p ) := max ( 0 , ( p − 1 )) + min ( 0 , ( p + 1 )) is semismooth from L q to L p , if and only if q > p , Newton derivative � h ( x ) if | p ( x ) | > 1 , D N P ( p ) h = h χ {| p | > 1 } := 0 if | p ( x ) | ≤ 1 . Problem formulation Solution of optimality system Parameter choice method Numerical results 13 / 35

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend