introduction to zonal polynomials
play

Introduction to Zonal Polynomials Lin Jiu Dalhousie University - PowerPoint PPT Presentation

Introduction to Zonal Polynomials Lin Jiu Dalhousie University Number Theory Seminar Jan. 22, 2018 Hypergeometric function and Pochhammer symbol z n a 1 , . . . , a s ( a 1 ) n ( a s ) n s F t : z := n ! , b 1 , .


  1. Introduction to Zonal Polynomials Lin Jiu Dalhousie University Number Theory Seminar Jan. 22, 2018

  2. Hypergeometric function and Pochhammer symbol ∞ · z n � a 1 , . . . , a s � ( a 1 ) n · · · ( a s ) n � s F t : z := n ! , b 1 , . . . , b t ( b 1 ) n · · · ( b t ) n n = 0

  3. Hypergeometric function and Pochhammer symbol ∞ · z n � a 1 , . . . , a s � ( a 1 ) n · · · ( a s ) n � s F t : z := n ! , b 1 , . . . , b t ( b 1 ) n · · · ( b t ) n n = 0 where ( a ) k = a ( a + 1 ) · · · ( a + k − 1 ) .

  4. Hypergeometric function and Pochhammer symbol ∞ · z n � a 1 , . . . , a s � ( a 1 ) n · · · ( a s ) n � s F t : z := n ! , b 1 , . . . , b t ( b 1 ) n · · · ( b t ) n n = 0 where ( a ) k = a ( a + 1 ) · · · ( a + k − 1 ) . Examples � � a , b ◮ 2 F 1 c : z is the Gaussian hypergeometric function s. t. z ( 1 − z ) d 2 w d z 2 + ( c − ( a + b + 1 ) z ) d w d z − abw = 0 .

  5. Hypergeometric function and Pochhammer symbol ∞ · z n � a 1 , . . . , a s � ( a 1 ) n · · · ( a s ) n � s F t : z := n ! , b 1 , . . . , b t ( b 1 ) n · · · ( b t ) n n = 0 where ( a ) k = a ( a + 1 ) · · · ( a + k − 1 ) . Examples � � a , b ◮ 2 F 1 c : z is the Gaussian hypergeometric function s. t. z ( 1 − z ) d 2 w d z 2 + ( c − ( a + b + 1 ) z ) d w d z − abw = 0 . � � 1 , 1 ◮ log ( 1 + z ) = z 2 F 1 2 : − z

  6. Hypergeometric function and Pochhammer symbol ∞ · z n � a 1 , . . . , a s � ( a 1 ) n · · · ( a s ) n � s F t : z := n ! , b 1 , . . . , b t ( b 1 ) n · · · ( b t ) n n = 0 where ( a ) k = a ( a + 1 ) · · · ( a + k − 1 ) . Examples � � a , b ◮ 2 F 1 c : z is the Gaussian hypergeometric function s. t. z ( 1 − z ) d 2 w d z 2 + ( c − ( a + b + 1 ) z ) d w d z − abw = 0 . � � 1 , 1 ◮ log ( 1 + z ) = z 2 F 1 2 : − z ◮ e z = 0 F 0 ( : z )

  7. Hypergeometric function with matrix argument

  8. Hypergeometric function with matrix argument Given an m × m symmetric (postive definite) matrix Y , ∞ ( a 1 ) p · · · ( a s ) p � a 1 , . . . , a s � · C p ( Y ) � � : Y := , s F t b 1 , . . . , b t ( b 1 ) p · · · ( b t ) p n ! n = 0 p ∈P n

  9. Hypergeometric function with matrix argument Given an m × m symmetric (postive definite) matrix Y , ∞ ( a 1 ) p · · · ( a s ) p � a 1 , . . . , a s � · C p ( Y ) � � : Y := , s F t b 1 , . . . , b t ( b 1 ) p · · · ( b t ) p n ! n = 0 p ∈P n where, ◮ P n is the set of all partitions of n

  10. Hypergeometric function with matrix argument Given an m × m symmetric (postive definite) matrix Y , ∞ ( a 1 ) p · · · ( a s ) p � a 1 , . . . , a s � · C p ( Y ) � � : Y := , s F t b 1 , . . . , b t ( b 1 ) p · · · ( b t ) p n ! n = 0 p ∈P n where, ◮ P n is the set of all partitions of n and a partition of n is a ( p 1 , . . . , p l ) ∈ N l such that p 1 ≥ · · · ≥ p l > 0 and p 1 + · · · + p l = n (= | p | ) ,

  11. Hypergeometric function with matrix argument Given an m × m symmetric (postive definite) matrix Y , ∞ ( a 1 ) p · · · ( a s ) p � a 1 , . . . , a s � · C p ( Y ) � � : Y := , s F t b 1 , . . . , b t ( b 1 ) p · · · ( b t ) p n ! n = 0 p ∈P n where, ◮ P n is the set of all partitions of n and a partition of n is a ( p 1 , . . . , p l ) ∈ N l such that p 1 ≥ · · · ≥ p l > 0 and p 1 + · · · + p l = n (= | p | ) , e.g., ( 5 , 2 , 2 , 1 ) ∈ P 10 ;

  12. Hypergeometric function with matrix argument Given an m × m symmetric (postive definite) matrix Y , ∞ ( a 1 ) p · · · ( a s ) p � a 1 , . . . , a s � · C p ( Y ) � � : Y := , s F t b 1 , . . . , b t ( b 1 ) p · · · ( b t ) p n ! n = 0 p ∈P n where, ◮ P n is the set of all partitions of n and a partition of n is a ( p 1 , . . . , p l ) ∈ N l such that p 1 ≥ · · · ≥ p l > 0 and p 1 + · · · + p l = n (= | p | ) , e.g., ( 5 , 2 , 2 , 1 ) ∈ P 10 ; l a − i − 1 ◮ for p = ( p 1 , . . . , p l ) ∈ P n , ( a ) p = � � � p i ; 2 i = 1

  13. Hypergeometric function with matrix argument Given an m × m symmetric (postive definite) matrix Y , ∞ ( a 1 ) p · · · ( a s ) p � a 1 , . . . , a s � · C p ( Y ) � � : Y := , s F t b 1 , . . . , b t ( b 1 ) p · · · ( b t ) p n ! n = 0 p ∈P n where, ◮ P n is the set of all partitions of n and a partition of n is a ( p 1 , . . . , p l ) ∈ N l such that p 1 ≥ · · · ≥ p l > 0 and p 1 + · · · + p l = n (= | p | ) , e.g., ( 5 , 2 , 2 , 1 ) ∈ P 10 ; l a − i − 1 ◮ for p = ( p 1 , . . . , p l ) ∈ P n , ( a ) p = � � � p i ; 2 i = 1 ◮ C p ( Y ) is ( C -normalization of ) zonal polynomial, which is homogeneous, symmetric, polynomial of degree n = | p | , in the eigenvalues of Y .

  14. Zonal Polynomial C p ( Y ) C p ( Y )

  15. Zonal Polynomial C p ( Y ) C p ( Y ) ◮ It is defined on eigenvalues of Y

  16. Zonal Polynomial C p ( Y ) C p ( Y ) ◮ It is defined on eigenvalues of Y C p ( y 1 , . . . , y m )

  17. Zonal Polynomial C p ( Y ) C p ( Y ) ◮ It is defined on eigenvalues of Y C p ( y 1 , . . . , y m ) ◮ For p = ( p 1 , . . . , p l ) , if m < l , (will see why later) C p ( Y ) = C p ( y 1 , . . . , y m , 0 , . . . , 0 )

  18. Zonal Polynomial C p ( Y ) C p ( Y ) ◮ It is defined on eigenvalues of Y C p ( y 1 , . . . , y m ) ◮ For p = ( p 1 , . . . , p l ) , if m < l , (will see why later) C p ( Y ) = C p ( y 1 , . . . , y m , 0 , . . . , 0 ) ◮ An important fact C p ( Y ) = ( tr Y ) n = ( y 1 + · · · + y m ) n . � p ∈P n

  19. Zonal Polynomial C p ( Y ) ∞ ∞ ( tr Y ) n ·C p ( Y ) � � � � � = e tr Y 0 F 0 : Y = = n ! n ! n = 0 p ∈P n n = 0

  20. Zonal Polynomial C p ( Y ) ∞ ∞ ( tr Y ) n ·C p ( Y ) � � � � � = e tr Y 0 F 0 : Y = = n ! n ! n = 0 p ∈P n n = 0 e z = 0 F 0 ( : z )

  21. Zonal Polynomial C p ( Y ) ∞ ∞ ( tr Y ) n ·C p ( Y ) � � � � � = e tr Y 0 F 0 : Y = = n ! n ! n = 0 p ∈P n n = 0 e z = 0 F 0 ( : z ) � a : z � = ( 1 − z ) − a 1 F 0 � a : Y � = det( I − A ) − a 1 F 0

  22. Definition 1

  23. Definition 1 � ( 2 p i − 2 p j − i + j ) · 2 n n ! i < j C p ( Y ) = d p Y p ( Y ) , where d p = ( 2 n )! . l � ( 2 p i + l − i )! i = 1

  24. Definition 1 � ( 2 p i − 2 p j − i + j ) · 2 n n ! i < j C p ( Y ) = d p Y p ( Y ) , where d p = ( 2 n )! . l � ( 2 p i + l − i )! i = 1 ◮ Define a linear space V n := { f : f is homogeneous, symmetric, of degree n , or f ≡ 0 }

  25. Definition 1 � ( 2 p i − 2 p j − i + j ) · 2 n n ! i < j C p ( Y ) = d p Y p ( Y ) , where d p = ( 2 n )! . l � ( 2 p i + l − i )! i = 1 ◮ Define a linear space V n := { f : f is homogeneous, symmetric, of degree n , or f ≡ 0 } where f is defined on eigenvalues of matrices. ◮ Basis for V n :

  26. Definition 1 � ( 2 p i − 2 p j − i + j ) · 2 n n ! i < j C p ( Y ) = d p Y p ( Y ) , where d p = ( 2 n )! . l � ( 2 p i + l − i )! i = 1 ◮ Define a linear space V n := { f : f is homogeneous, symmetric, of degree n , or f ≡ 0 } where f is defined on eigenvalues of matrices. ◮ Basis for V n : define the elementary symmetric polynomial � u r ( x 1 , . . . , x m ) := x i 1 · · · x i r . i 1 < ··· < i r Then, for p = ( p 1 , . . . , p l ) ∈ P n · · · u p l − 1 − p l u p l ( − 0 ) U p := u p 1 − p 2 u p 2 − p 3 , 1 2 l − 1 l

  27. Definition 1 � ( 2 p i − 2 p j − i + j ) · 2 n n ! i < j C p ( Y ) = d p Y p ( Y ) , where d p = ( 2 n )! . l � ( 2 p i + l − i )! i = 1 ◮ Define a linear space V n := { f : f is homogeneous, symmetric, of degree n , or f ≡ 0 } where f is defined on eigenvalues of matrices. ◮ Basis for V n : define the elementary symmetric polynomial � u r ( x 1 , . . . , x m ) := x i 1 · · · x i r . i 1 < ··· < i r Then, for p = ( p 1 , . . . , p l ) ∈ P n · · · u p l − 1 − p l u p l ( − 0 ) U p := u p 1 − p 2 u p 2 − p 3 , 1 2 l − 1 l ◮ deg U p =

  28. Definition 1 � ( 2 p i − 2 p j − i + j ) · 2 n n ! i < j C p ( Y ) = d p Y p ( Y ) , where d p = ( 2 n )! . l � ( 2 p i + l − i )! i = 1 ◮ Define a linear space V n := { f : f is homogeneous, symmetric, of degree n , or f ≡ 0 } where f is defined on eigenvalues of matrices. ◮ Basis for V n : define the elementary symmetric polynomial � u r ( x 1 , . . . , x m ) := x i 1 · · · x i r . i 1 < ··· < i r Then, for p = ( p 1 , . . . , p l ) ∈ P n · · · u p l − 1 − p l u p l ( − 0 ) U p := u p 1 − p 2 u p 2 − p 3 , 1 2 l − 1 l ◮ deg U p = p 1 − p 2 + 2 ( p 2 − p 3 ) + · · · + lp l

  29. Definition 1 � ( 2 p i − 2 p j − i + j ) · 2 n n ! i < j C p ( Y ) = d p Y p ( Y ) , where d p = ( 2 n )! . l � ( 2 p i + l − i )! i = 1 ◮ Define a linear space V n := { f : f is homogeneous, symmetric, of degree n , or f ≡ 0 } where f is defined on eigenvalues of matrices. ◮ Basis for V n : define the elementary symmetric polynomial � u r ( x 1 , . . . , x m ) := x i 1 · · · x i r . i 1 < ··· < i r Then, for p = ( p 1 , . . . , p l ) ∈ P n · · · u p l − 1 − p l u p l ( − 0 ) U p := u p 1 − p 2 u p 2 − p 3 , 1 2 l − 1 l ◮ deg U p = p 1 − p 2 + 2 ( p 2 − p 3 ) + · · · + lp l = p 1 + · · · + p l = n .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend