introduction to secdec
play

Introduction to SecDec Stephen Jones With SecDec collaboration: S. - PowerPoint PPT Presentation

9 February 2016 HiggsTools Journal Club XI Introduction to SecDec Stephen Jones With SecDec collaboration: S. Borowka, G. Heinrich, S. Jahn, M. Kerner, J. Schlenk, T. Zirke An Apology (First Half) Apology to Theorists: Talk will be slow, basic


  1. 9 February 2016 HiggsTools Journal Club XI Introduction to SecDec Stephen Jones With SecDec collaboration: S. Borowka, G. Heinrich, S. Jahn, M. Kerner, J. Schlenk, T. Zirke

  2. An Apology (First Half) Apology to Theorists: Talk will be slow, basic and will skip a lot of very important details and steps (Second Half) Apology to Experimentalists: Talk will get technical Don’t worry at the end I’ll introduce a tool that handles all the book-keeping. 2

  3. Content Part 1 • From Cross-sections to Amplitudes • Feynman Rules • Loops ↔ Integrals • Dimensional Regularisation Part 2 • Feynman Parameters • Graph Polynomials • Sector Decomposition Part 3 • SecDec Demo (Implements all of the above) 3

  4. Schematics Total CS Order σ F = σ (0) + σ (1) + . . . F F Final State Z 1 Z 1 Z σ (0) X σ (0) = d x i d x j f i ( x i ) f j ( x j ) dˆ m F 0 0 m i,j Z 1 Z 1 Z � Z σ (1) σ (0) X σ (1) = d x i d x j f i ( x i ) f j ( x j ) dˆ m + dˆ m +1 F 0 0 m +1 m i,j 4

  5. Schematics Total CS Order σ F = σ (0) + σ (1) + . . . Phase Space Integral F F (Differential) PDFs Final State Partonic CS Z 1 Z 1 Z σ (0) X σ (0) = d x i d x j f i ( x i ) f j ( x j ) dˆ # legs m F 0 0 m i,j Z 1 Z 1 Z � Z σ (1) σ (0) X σ (1) = d x i d x j f i ( x i ) f j ( x j ) dˆ m + dˆ m +1 F 0 0 m +1 m i,j 4

  6. Schematics Total CS Order σ F = σ (0) + σ (1) + . . . Phase Space Integral F F (Differential) PDFs Final State Partonic CS Z 1 Z 1 Z σ (0) X σ (0) = d x i d x j f i ( x i ) f j ( x j ) dˆ # legs m F 0 0 m i,j Higher Order More Legs Z 1 Z 1 Z � Z σ (1) σ (0) X σ (1) = d x i d x j f i ( x i ) f j ( x j ) dˆ m + dˆ m +1 F 0 0 m +1 m i,j ``Virtuals’’ ``Reals’’ 4

  7. Schematics (II) (Differential) Partonic CS Phase Space Measure Average/Sum σ (0) m = d Φ m h M (0) m M (0) † (Initial/Final) m i dˆ Spin & Colour σ (0) m +1 = d Φ m +1 h M (0) m +1 M (0) † m +1 i dˆ σ (1) m = d Φ m h M (1) m M (0) † + M (1) † m M (0) m i dˆ m Amplitude 5

  8. Feynman Rules Feynman rules allow us to compute an amplitude , , as an M expansion in the coupling, : g Vertex (3-point) Vertex (4-point) Propagator k 4 k k 1 k 3 k 3 k 1 Z ∞ d 4 k 1 ( k 2 − m 2 + i δ ) (2 π ) 4 k 2 −∞ k 2 g δ (4) ( k 1 + k 2 + k 3 ) g 2 δ (4) ( k 1 + k 2 + k 3 + k 4 ) Corresponds to summing over intermediate states Propagators increment # integrations, Vertices decrement Feynman diagram: `Glue’ these pictures together and `factor out’ a delta function for overall momentum conservation 6

  9. Loops & Integrals I = # internal lines, V = # vertices Count the number of unconstrained momenta and call this number L I = 1 I = 2 V = 2 V = 2 L = 0 L = 1 I = 5 I = 6 V = 4 V = 4 L = 2 L = Overall momentum conservation Generally: , We define, to be # loops L = I − ( V − 1) L # Loops ≡ # Unconstrained Momenta ↔ # of Integrations 7

  10. Loops & Integrals I = # internal lines, V = # vertices Count the number of unconstrained momenta and call this number L I = 1 I = 2 V = 2 V = 2 L = 0 L = 1 I = 5 I = 6 V = 4 V = 4 L = 2 L = 3 Overall momentum conservation Generally: , We define, to be # loops L = I − ( V − 1) L # Loops ≡ # Unconstrained Momenta ↔ # of Integrations 7

  11. Constructing Integrals Finding all the integrals ⇒ compute the diagram Nevertheless, can see the denominator of integrals immediately: k p 1 p 4 D 1 = k 2 − m 2 d 4 k 1 D 2 = ( k + p 1 ) 2 − m 2 Z k + p 1 k + p 1 + p 2 − p 3 ∼ D 3 = ( k + p 1 + p 2 ) 2 − m 2 (2 π ) 4 D 1 D 2 D 3 D 4 D 4 = ( k + p 1 + p 2 − p 3 ) 2 − m 2 p 2 p 3 k + p 1 + p 2 d 4 k 1 d 4 k 2 1 Z Z ∼ (2 π ) 4 (2 π ) 4 P 1 P 2 P 3 P 4 P 5 P 6 k 2 k 1 8

  12. Computing Integrals Z ∞ d 4 k 1 k ∼ ( k 2 − m 2 + i δ ) (2 π ) 4 −∞ Z ∞ 1 − i Z d r r 3 Problem: = d Ω 3 ( r 2 + m 2 − i δ ) (2 π ) 4 0 This integral Z ∞ 2 π 2 1 − i d r r 3 = is divergent! ( r 2 + m 2 − i δ ) (2 π ) 4 Γ (2) 0 2 π 2 1 − i r 2 − m 2 ln( r 2 + m 2 ) nonsense ⇤ ∞ ⇥ ∼ (2 π ) 4 0 Γ (2) 2 There are many ways out of this problem! Note: If measure was then for this integral would be finite, d D k D < 2 this observation led to Dimensional Regularisation Aside: Divergence from , called an ultraviolet (UV) divergence | k µ | → ∞ 9

  13. Dimensional Regularisation Dim. Reg. is the current ``standard’’ in perturbation theory. Key Ideas: • Treat number of space-time dimensions ( D = 4 − 2 ✏ ) ∈ C • Reformulate entire QFT in dimensions (start from ) L D • Use to regulate UV, use to regulate infrared (IR) D < 4 D > 4 • Physical observables for are obtained by (analytic D = 4 D → 4 continuation) not always 't Hooft, Veltman 72 easy ( γ 5 ) For this to be consistent we require (1) uniqueness , (2) existence and we need to know (3) properties (linearity, scaling, translation invar.) Recommended: J. Collins, Renormalization See textbook 10

  14. Computing Integrals (Revisited) d D k 1 Z ∼ I = ( k 2 − m 2 + i δ ) k (2 π ) D Z ∞ 1 − i Z d r r D − 1 = d Ω D − 1 ( r 2 + m 2 − i δ ) (2 π ) D 0 Z ∞ D 2 π 1 − i 2 d r r D − 1 = ( r 2 + m 2 − i δ ) Γ ( D (2 π ) D 2 ) 0 Substitute: r 2 = y ( m 2 − i δ ) D Z ∞ 2 π 1 − i 2 D D 2( m 2 − i δ ) 2 − 1 2 − 1 ( y + 1) − 1 I = d y y (2 π ) D Γ ( D 2 ) 0 Euler Beta Function D 2 π 1 ✓ D ◆ − i 2 , 1 − D 2 D 2( m 2 − i δ ) 2 − 1 B = Re( D/ 2) > 0 Γ ( D (2 π ) D 2 2 ) Re(1 − D/ 2) > 0 D 2 − 1 Γ ( D 2 ) Γ (1 − D 2 ) 2 π 1 − i 2 D 2( m 2 − i δ ) = Γ ( D (2 π ) D Γ (1) 2 ) Our problem is solved! How do we do more complicated integrals? 11

  15. Part 2 There are many ways of computing Feynman integrals! What follows is one specific approach. 12

  16. Conventions Loop integral: L loops L 1 Z Y d D k l ⇥ ⇤ G = Q N j =1 P ν j j ( { k } , { p } , m 2 j ) l =1 N propagators = µ 4 − D d D k l 2 d D k l ⇥ ⇤ D i π Propagator: Mass Important: + P j ( { k } , { p } , m 2 j ) = ( q 2 j − m 2 j + i δ ) External Linear combination of loop/ Loop momenta external momenta momenta 13

  17. Feynman Parameterization Previous integral was easy due to spherical symmetry ! Feynman parameterization is one way to cast all loop integrals into this form. Notice that: Z 1 1 du AB = [ uA + (1 − u ) B ] 2 0 Or more generally: N N Z ∞ 1 Γ ( N ν ) 1 d x j x ν j − 1 Y X = δ (1 − x i ) j Q N Q N i N ν j =1 P ν j j =1 Γ ( ν j ) hP N 0 j =1 x j P j j j =1 i =1 Feynman Parameters Product Sum N ν = ν 1 + . . . + ν N 14

  18. Feynman Parameterization (II) Feynman parameterizing our loop integral: L N N Z ∞ Z ∞ 1 Γ ( N ν ) Y Y d x j x ν j − 1 X d D k l ⇥ ⇤ G = = δ (1 − x i ) j Q N Q N j =1 P ν j j =1 Γ ( ν j ) 0 −∞ j j =1 i =1 l =1 − N ν 2 3 L L L Z ∞ Y X X d D k l k T k T ⇥ ⇤ i M ij k j − 2 j · Q j + J + i δ × 4 5 −∞ i,j =1 j =1 l =1 From quadratic (in k) Linear (in k) terms terms of propagators Key Point: In this form we can shift k to eliminate linear terms (obtain spherical symmetry) then do the momentum integrals! 15

  19. Feynman Parameterization (III) After integration over momenta we obtain: Master Formula N N Z ∞ x i ) U N ν − ( L +1) D/ 2 ( ~ G = ( − 1) N ν Γ ( N ν − LD/ 2) x ) d x j x ν j − 1 Y X � (1 − j Q N F N ν − LD/ 2 ( ~ x, s ij ) j =1 Γ ( ⌫ j ) 0 j =1 i =1 Graph Polynomials: 1st Symanzik Polynomial: U ( ~ x ) = det( M ) 2 3 L 2nd Symanzik Polynomial: X Q i M − 1 F ( ~ x, s ij ) = det( M ) ij Q j − J − i � 4 5 i,j =1 We have exchanged momentum integrals for parameter integrals L N Maybe this looks complicated… but wait! 16

  20. Graph Polynomials Properties: • Homogenous polynomials in the Feynman Parameters is degree U ( ~ x ) L is degree F ( ~ x, s ij ) L + 1 x ) P N Internal masses i =1 x i m 2 F ( ~ x, s ij ) = F 0 ( ~ x, s ij ) + U ( ~ i • and are linear in each Feynman Parameter U ( ~ x ) F 0 ( ~ x, s ij ) and can be constructed graphically F 0 ( ~ x, s ij ) U ( ~ x ) We will follow: Bogner, Weinzierl 10 17

  21. Constructing U Draw graph, label edges with Feynman Parameters q 1 q 2 x 1 x 4 Rules for : U ( ~ x ) x 5 q 5 1. Delete edges all possible ways L x 2 x 3 q 4 q 3 2. Throw away disconnected graphs or graphs with L 6 = 0 3. Sum monomials of Feynman parameters of deleted edges q 1 q 2 q 5 q 4 q 3 U ( ~ x ) = 18

  22. Constructing U Draw graph, label edges with Feynman Parameters q 1 q 2 x 1 x 4 Rules for : U ( ~ x ) x 5 q 5 1. Delete edges all possible ways L x 2 x 3 q 4 q 3 2. Throw away disconnected graphs or graphs with L 6 = 0 3. Sum monomials of Feynman parameters of deleted edges Discon. Loop q 1 q 2 q 5 q 4 q 3 U ( ~ x ) = 18

  23. Constructing U Draw graph, label edges with Feynman Parameters q 1 q 2 x 1 x 4 Rules for : U ( ~ x ) x 5 q 5 1. Delete edges all possible ways L x 2 x 3 q 4 q 3 2. Throw away disconnected graphs or graphs with L 6 = 0 3. Sum monomials of Feynman parameters of deleted edges Discon. Loop q 1 q 2 q 5 q 4 q 3 U ( ~ x ) = 18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend