introduction to robotics
play

Introduction to Robotics Jianwei Zhang - PDF document

MIN-Fakult at Department Informatik Universit at Hamburg - Introduction to Robotics Introduction to Robotics Jianwei Zhang zhang@informatik.uni-hamburg.de Universit at Hamburg Fakult at f ur Mathematik, Informatik und


  1. MIN-Fakult¨ at Department Informatik Universit¨ at Hamburg - Introduction to Robotics Introduction to Robotics Jianwei Zhang zhang@informatik.uni-hamburg.de Universit¨ at Hamburg Fakult¨ at f¨ ur Mathematik, Informatik und Naturwissenschaften Department Informatik Technische Aspekte Multimodaler Systeme 26. April 2013 J. Zhang 80 MIN-Fakult¨ at Department Informatik Universit¨ at Hamburg Inverse kinematics for manipulators Introduction to Robotics Outline General Information Introduction Coordinates of a manipulator Kinematic equations Inverse kinematics for manipulators Analytical solvability of manipulator Example 1: a planar 3 DOF manipulator The algebraical solution using the example of PUMA 560 The solution for RPY angles Geometrical solution for PUMA 560 A Framework for robots under UNIX: RCCL J. Zhang 81

  2. MIN-Fakult¨ at Department Informatik Universit¨ at Hamburg Inverse kinematics for manipulators Introduction to Robotics Inverse kinematics for manipulators Set of problems: ◮ The control of robot manipulators take place in the majority of cases in joint space , ◮ The information about objects are mostly given in the cartesian space . To achieve a one specific tool frame T related to the world, the joint values θ ( t ) = ( θ 1 ( t ) , θ 2 ( t ) , ..., θ n ( t )) T should be calculated in two steps: 1. Calculation of T 6 = Z − 1 BGE − 1 ; 2. Calculation of θ 1 , θ 2 , ..., θ n over T 6 . ⇒ : In this case the inverse kinematics is more important then the forward kinematics. J. Zhang 82 MIN-Fakult¨ at Department Informatik Universit¨ at Hamburg Inverse kinematics for manipulators Introduction to Robotics The solution using the example of PUMA 560 - I   n x o x a x p x n y o y a y p y T 6 = T ′ T ′′ =     n z o z a z p z   0 0 0 1 where J. Zhang 83

  3. MIN-Fakult¨ at Department Informatik Universit¨ at Hamburg Inverse kinematics for manipulators Introduction to Robotics The solution using the example of PUMA 560 - II n x = C 1 [ C 23 ( C 4 C 5 C 6 − S 4 S 6 ) − S 23 S 5 C 6 ] − S 1 ( S 4 C 5 C 6 + C 4 S 6 ) (2) n y = S 1 [ C 23 ( C 4 C 5 C 6 − S 4 S 6 − S 23 S 5 S 6 ] + C 1 ( S 4 C 5 C 6 + C 4 S 6 ) (3) n z = − S 23 [ C 4 C 5 C 6 − S 4 S 6 ] − C 23 S 5 C 6 (4) o x = ... (5) o y = ... (6) o z = ... (7) a x = ... (8) a y = ... (9) a z = ... (10) J. Zhang 84 MIN-Fakult¨ at Department Informatik Universit¨ at Hamburg Inverse kinematics for manipulators Introduction to Robotics The solution using the example of PUMA 560 - III p x = C 1 [ d 6 ( C 23 C 4 S 5 + S 23 C 5 ) + S 23 d 4 + a 3 C 23 + a 2 C 2 ] − S 1 ( d 6 S 4 S 5 + d 2 ) (11) p y = S 1 [ d 6 ( C 23 C 4 S 5 + S 23 C 5 ) + S 23 d 4 + s 3 C 23 + a 2 C 2 ] + C 1 ( d 6 S 4 S 5 + d 2 ) (12) p z = d 6 ( C 23 C 5 − S 23 C 4 S 5 ) + C 23 d 4 − a 3 S 23 − a 2 S 2 (13) J. Zhang 85

  4. MIN-Fakult¨ at Department Informatik Universit¨ at Hamburg Inverse kinematics for manipulators Introduction to Robotics Remark ◮ Non-linear equations ◮ Existence of solutions: Workspace: the volume of space that is recheable for the tool of manipulator. ◮ ”dextrous workspace” ◮ ”reachable workspace” ◮ Many joint positions that produce the similar TCP position using the example of PUMA 560: ◮ Ambiguity of solutions for θ 1 , θ 2 , θ 3 related to given p . ◮ For each solution of θ 4 , θ 5 , θ 6 exist the alternative solution: J. Zhang 86 MIN-Fakult¨ at Department Informatik Universit¨ at Hamburg Inverse kinematics for manipulators Introduction to Robotics Remark θ ′ 4 = θ 4 + 180 ◦ θ ′ 5 = − θ 5 θ ′ 6 = θ 6 + 180 ◦ ◮ Different solution strategy: closed solutions vs. numerical solutions J. Zhang 87

  5. MIN-Fakult¨ at Department Informatik Universit¨ at Hamburg Inverse kinematics for manipulators Introduction to Robotics Different methods for solution finding Closed form: ◮ algebraic solution + : accurate solution over the equations, − : solution is not geometrical representative. ◮ geometrical solution + : case-by-case analysis of the possible robot configurations, − : robot specific. Numerical form: ◮ iterative methods + : the methods are transferable, − : computationally intensive, for several exceptions the convergence can not be guaranteed. J. Zhang 88 MIN-Fakult¨ at Department Informatik Universit¨ at Hamburg Inverse kinematics for manipulators Introduction to Robotics Methods for solution finding ”The inverse kinematics for all systems with 6 DOF (translational or rotational joints) in a simple serial chain is always numerical solvable.” J. Zhang 89

  6. MIN-Fakult¨ at Department Informatik Universit¨ at Hamburg Inverse kinematics for manipulators - Analytical solvability of manipulator Introduction to Robotics Analytical solvability of manipulator The closed solution exists if a specific conditions (sufficient conditions) for the arm geometry are given: ◮ If 3 sequent axis intersect in a given point, ◮ Or: 3 sequent axis are parallel to each other. It’s important to design a manipulator in the way that the closed solution exists. Almost all manipulators are conceptualized in this way. An example for PUMA 560: The axis 4, 5 and 6 intersect in one point. J. Zhang 90 MIN-Fakult¨ at Department Informatik Universit¨ at Hamburg Inverse kinematics for manipulators - Example 1: a planar 3 DOF manipulator Introduction to Robotics Example 1: a planar 3 DOF manipulator J. Zhang 91

  7. MIN-Fakult¨ at Department Informatik Universit¨ at Hamburg Inverse kinematics for manipulators - Example 1: a planar 3 DOF manipulator Introduction to Robotics Example 1: a planar 3 DOF manipulator Joint α i − 1 a i − 1 d i θ i 1 0 0 0 θ 1 2 0 l 1 0 θ 2 3 0 0 θ 3 l 2   C 123 − S 123 0 l 1 C 1 + l 2 C 12 0 l 1 S 1 + l 2 S 12 S 123 C 123 0 T 3 =     0 0 1 0   0 0 0 1 J. Zhang 92 MIN-Fakult¨ at Department Informatik Universit¨ at Hamburg Inverse kinematics for manipulators - Example 1: a planar 3 DOF manipulator Introduction to Robotics The algebraical solution for the example 1 - I Specification for the TCP: ( x , y , φ ). For this such kind of vektors applies:   C φ − S φ 0 x 0 S φ C φ y 0 T 3 =     0 0 1 0   0 0 0 1 Resultant four equations can be derived: C φ = C 123 (14) S φ = S 123 (15) x = l 1 C 1 + l 2 C 12 (16) y = l 1 S 1 + l 2 S 12 (17) J. Zhang 93

  8. MIN-Fakult¨ at Department Informatik Universit¨ at Hamburg Inverse kinematics for manipulators - Example 1: a planar 3 DOF manipulator Introduction to Robotics The algebraical solution for the example 1 - II (Derivative) The function atan 2 is define as:  0 for x = 0 , y = 0    π/ 2 for x = 0 , y > 0     3 ∗ π/ 2 for x = 0 , y < 0     θ = atan 2( y , x ) = atan ( y , x ) for +x and +y  2 π − atan ( y , x ) for +x und -y      π − atan ( y , x ) for -x und +y      π + atan ( y , x ) for -x und -y The solution: θ 2 = atan 2( S 2 , C 2 ) J. Zhang 94 MIN-Fakult¨ at Department Informatik Universit¨ at Hamburg Inverse kinematics for manipulators - Example 1: a planar 3 DOF manipulator Introduction to Robotics The algebraical solution for the example 1 - II � 2 , and C 2 = x 2 + y 2 − l 2 1 − l 2 1 − C 2 where S 2 = ± . 2 2 l 1 l 2 θ 1 = atan 2( y , x ) − atan 2( k 2 , k 1 ) where k 1 = l 1 + l 2 C 2 and k 2 = l 2 S 2 . θ 3 can be calculated as follow: θ 1 + θ 2 + θ 3 = atan 2( S φ , C φ ) = φ J. Zhang 95

  9. MIN-Fakult¨ at Department Informatik Universit¨ at Hamburg Inverse kinematics for manipulators - Example 1: a planar 3 DOF manipulator Introduction to Robotics The geometrical solution for the example 1 - I Calculate θ 2 over “law of cosines”: x 2 + y 2 = l 2 1 + l 2 2 − 2 l 1 l 2 cos(180 + θ 2 ) The solution: θ 2 = ± cos − 1 x 2 + y 2 − l 2 1 − l 2 2 2 l 1 l 2 θ 1 = β ± ψ where: cos ψ = x 2 + y 2 − l 2 1 − l 2 2 β = atan 2( y , x ) , x 2 + y 2 � 2 l 1 For θ 1 , θ 2 , θ 3 applies: θ 1 + θ 2 + θ 3 = φ J. Zhang 96 MIN-Fakult¨ at Department Informatik Universit¨ at Hamburg Inverse kinematics for manipulators - Example 1: a planar 3 DOF manipulator Introduction to Robotics Algebraical solution with the help of polynomial conversion The following substitutions are used for the polynomial conversion of transcendental equations: u = tan θ 2 cos θ = 1 − u 2 1 + u 2 2 u sin θ = 1 + u 2 J. Zhang 97

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend