introduction to model predictive control mpc
play

Introduction to Model Predictive Control (MPC) Oscar Mauricio - PowerPoint PPT Presentation

Introduction to Model Predictive Control (MPC) Oscar Mauricio Agudelo Maozca Bart De Moor Course : Computergestuurde regeltechniek ESAT - KU Leuven May 11th, 2017 Basic Concepts Control method for handling input and state constraints


  1. MPC optimization problem – Implementation Details      I B Ax ( ) k N times n   x      A I B  0                    N n N n n n N n b A x x u x x   e e           0 A I B N times   n x n x = number of states , n u = number of inputs, N = prediction horizon Remarks:  The problem is convex if Q and R are positive semi-definite  The hessian matrix H , and the matrices A e and A i are sparse.  Number of optimization variables: N ( n x + n u ). This number can be reduced to N·n u (Condensed form of the MPC) through elimination of the states x ( k ) but at the cost of sparsity !!! Matlab function for solving the LCQP optimization problem x_tilde = quadprog (H, f, Ai, bi , Ae, be) Introduction to Model Predictive Control Course: Computergestuurde regeltechniek 14

  2. MPC with terminal cost Large Prediction Horizon N What happens? We have a winner !!! Short Prediction Horizon N What happens? We have an accident !!! N should be large enough in order to keep the process under control Introduction to Model Predictive Control Course: Computergestuurde regeltechniek 15

  3. MPC with terminal cost   N 1 N 1              T           T min x ( k i ) x ( k i ) Q x ( k i ) x ( k i ) u ( k i ) u ( k i ) R u ( k i ) u ( k i ) ref ref ref ref x , u   N N i 1 i 0         T    x ( k N ) x ( k N ) S x ( k N ) x ( k N ) ref ref subject to         x ( k 1 i ) Ax ( k i ) Bu ( k i ), i 0,1, , N 1,     u ( k i ) u , i 0,1, , N 1, max    x x ( k i ) , i 1,2, , N , max x k 2 ( ) Main goal of the terminal cost: k  x ( 1) k  To include the terms for which i ≥ N in the cost x ( 2) function (To extend the prediction horizon to infinity) x ( ) k  x ( k N ) What do we gain? Effect of the stabilizing control law u ( k ) = - Kx ( k ) “Stability” k   x ( ) x k 1 ( ) k  x ref ( ) 0 steady-state Introduction to Model Predictive Control Course: Computergestuurde regeltechniek 16

  4. MPC with terminal cost How to calculate S ? By solving the discrete-time Riccati equation,       T T T 1 T A SA S ( A SB B SB )( R ) ( B SA ) Q 0      1 where u ( k ) = -Kx ( k ) is the stabilizing control law.   T T K B SB R B SA . How to carry out this calculation in Matlab? [K,S] = dlqr (A, B, Q, R ) Implementation details of the MPC with terminal constraint The only change in the LCQP is the hessian matrix N - 1 times   Q       Q                  N n n N n n H x u x u 2 S     R         R N times Introduction to Model Predictive Control Course: Computergestuurde regeltechniek 17

  5. H0K03a : Advanced Process Control Model-based Predictive Control 1 : Introduction Bert Pluymers Prof. Bart De Moor Katholieke Universiteit Leuven, Belgium Faculty of Engineering Sciences Department of Electrical Engineering (ESAT) Research Group SCD-SISTA H0k03a : Advanced Process Control – Model-based Predictive Control 1 : Introduction bert.pluymers@esat.kuleuven.be

  6. Overview • Overview • Motivating Example • MPC Paradigm • History • Mathematical Formulation • MPC 1 : Introduction • MPC Basics • MPC 2 : Dynamic Optimization • MPC 3 : Stability • MPC 4 : Robustness • Industry Speaker : Christiaan Moons (IPCOS) (november 3 rd ) S ignal processing I dentification S ystem T heory 1 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 1 : Introduction bert.pluymers@esat.kuleuven.be

  7. Overview • Overview • Motivating Example • MPC Paradigm • History • Mathematical Formulation Lesson 1 : Introduction • MPC Basics • Motivating example • MPC Paradigm • History • Mathematical Formulation • MPC Basics S ignal processing I dentification S ystem T heory 2 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 1 : Introduction bert.pluymers@esat.kuleuven.be

  8. Motivating Example • Overview • Motivating Example • MPC Paradigm • History • Mathematical Formulation Consider a linear discrete-time state-space model • MPC Basics called a ‘ double integrator ’. We want to design a state feedback controller that stabilizes the system (i.e. steers it to x=[0; 0]) starting from x=[1; 0], without violating the imposed input constraints S ignal processing I dentification S ystem T heory 3 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 1 : Introduction bert.pluymers@esat.kuleuven.be

  9. Motivating Example • Overview • Motivating Example • MPC Paradigm • History • Mathematical Formulation Furthermore, we want the controller to lead to a • MPC Basics minimal control ‘cost’ defined as with state and input weighting matrices A straightforward candidate is the LQR controller, which has the form S ignal processing I dentification S ystem T heory 4 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 1 : Introduction bert.pluymers@esat.kuleuven.be

  10. Motivating Example • Overview • Motivating Example • MPC Paradigm • History LQR controller • Mathematical Formulation • MPC Basics 1 0.5 x k,1 0 -0.5 0 50 100 150 200 250 300 k 10 0 u k -10 -20 -30 0 50 100 150 200 250 300 S ignal processing k I dentification S ystem T heory 5 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 1 : Introduction bert.pluymers@esat.kuleuven.be

  11. Motivating Example • Overview • Motivating Example • MPC Paradigm • History LQR controller with clipped inputs • Mathematical Formulation 1 • MPC Basics 0.5 x k,1 0 -0.5 -1 0 50 100 150 200 250 300 k 0.15 0.1 0.05 u k 0 -0.05 -0.1 0 50 100 150 200 250 300 S ignal processing k I dentification S ystem T heory 6 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 1 : Introduction bert.pluymers@esat.kuleuven.be

  12. Motivating Example • Overview • Motivating Example • MPC Paradigm • History LQR controller with R=100 • Mathematical Formulation 1 • MPC Basics 0.5 x k,1 0 -0.5 0 50 100 150 200 250 300 k 0.1 0.05 u k 0 -0.05 -0.1 0 50 100 150 200 250 300 S ignal processing I dentification k S ystem T heory 7 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 1 : Introduction bert.pluymers@esat.kuleuven.be

  13. Motivating Example • Overview • Motivating Example • MPC Paradigm • History • Mathematical Formulation waste gas • MPC Basics F T Cracking P Furnace Feed H condenser EDC L EDC / VC / HCl superheater evaporato T r P F Fuel gas Systematic way to deal with this issue… ? S ignal processing I dentification S ystem T heory 8 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 1 : Introduction bert.pluymers@esat.kuleuven.be

  14. MPC Paradigm • Overview • Motivating Example • MPC Paradigm • History • Mathematical Formulation • MPC Basics Process industry in ’70s : how to control a process ??? S ignal processing I dentification and… easy to understand (i.e. teach) and implement ! S ystem T heory 9 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 1 : Introduction bert.pluymers@esat.kuleuven.be

  15. MPC Paradigm • Overview • Motivating Example • MPC Paradigm → Modelbased Predictive Control (MPC) • History • Mathematical Formulation • MPC Basics • Predictive : use model to optimize future input sequence S ignal processing • Feedback : incoming measurements used to compensate for I dentification inaccuracies in predictions and unmeasured disturbances S ystem T heory 10 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 1 : Introduction bert.pluymers@esat.kuleuven.be

  16. MPC Paradigm • Overview • Motivating Example • MPC Paradigm MPC has earned its place in the control hierarchy… • History • Mathematical Formulation • MPC Basics • Econ. Opt. : optimize profits using market and plant information (~day) • MPC : steer process to desired trajectory (~minute) • PID : control flows, temp., press., … towards MPC setpoints (~second) S ignal processing I dentification S ystem T heory 11 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 1 : Introduction bert.pluymers@esat.kuleuven.be

  17. History • Overview • Motivating Example • MPC Paradigm • History • Mathematical Formulation Before 1960’s : • MPC Basics • only input/output models, i.e. transfer functions, FIR models • Controllers : • heuristic (e.g. on/off controllers) • PID, lead/lag compensators, … • mostly SISO • MIMO case : input/output pairing, then SISO control S ignal processing I dentification S ystem T heory 12 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 1 : Introduction bert.pluymers@esat.kuleuven.be

  18. History • Overview • Motivating Example • MPC Paradigm • History • Mathematical Formulation Early 1960’s : Rudolf Kalman • MPC Basics • Introduction of the State Space model : • notion of states as ‘internal memory’ of the system • states not always directly measurable : ‘Kalman’ Filter ! • afterwards LQR (as the dual of Kalman filtering) • LQG : LQR + Kalman filter • But LQG no real succes in industry : • constraints not taken into account • only for linear models • only quadratic cost objectives S ignal processing I dentification • no model uncertainties S ystem T heory 13 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 1 : Introduction bert.pluymers@esat.kuleuven.be

  19. History • Overview • Motivating Example • MPC Paradigm • History • Mathematical Formulation During 1960’s : ‘Receding Horizon’ concept • MPC Basics • Propoi, A. I. (1963). “ Use of linear programming methods for synthesizing sampled-data automatic systems ”. Automatic Remote Control, 24(7), 837 – 844 . • Lee, E. B., & Markus, L. (1967). “ Foundations of optimal control theory ” . New York: Wiley. : “… One technique for obtaining a feedback controller synthesis from knowledge of open-loop controllers is to measure the current control process state and then compute very rapidly for the open- loop control function. The first portion of this function is then used during a short time interval, after which a new measurement of the function is computed for this new measurement. The procedure is then repeated. …” S ignal processing I dentification S ystem T heory 14 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 1 : Introduction bert.pluymers@esat.kuleuven.be

  20. History • Overview • Motivating Example • MPC Paradigm • History • Mathematical Formulation During 1960’s : ‘Receding Horizon’ concept • MPC Basics S ignal processing I dentification S ystem T heory 15 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 1 : Introduction bert.pluymers@esat.kuleuven.be

  21. History • Overview • Motivating Example • MPC Paradigm • History • Mathematical Formulation 1970’s : 1 st generation MPC • MPC Basics • Extension of the LQR / LQG framework through combination with the ‘receding horizon’ concept • IDCOM (Richalet et al., 1976) : • IR models • quadratic objective • input / output constraints • heuristic solution strategy • DMC (Shell, 1973) : • SR models • quadratic objective • no constraints S ignal processing • solved as least-squares problem I dentification S ystem T heory 16 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 1 : Introduction bert.pluymers@esat.kuleuven.be

  22. History • Overview • Motivating Example • MPC Paradigm • History • Mathematical Formulation Early 1980’s : 2 nd generation MPC • MPC Basics • Improve the rather ad-hoc constraint handling of the 1 st generation MPC algorithms • QDMC (Shell, 1983) : • SR models • quadratic objective • linear constraints • solved as a quadratic program (QP) Late 1980’s : 3 rd generation MPC • IDCOM-M (Setpoint, 1988), SMOC (Shell, late 80’s), … • Constraint prioritizing • Monitoring / Removal of ill-conditioning S ignal processing I dentification • fault-tolerance w.r.t. lost signals S ystem T heory 17 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 1 : Introduction bert.pluymers@esat.kuleuven.be

  23. History • Overview • Motivating Example • MPC Paradigm • History • Mathematical Formulation Mid 1990’s : 4 th generation MPC • MPC Basics • DMC-Plus (Honeywell Hi- Spec, ‘95), RMPCT (Aspen Tech, ‘96) • Graphical user interfaces • Explicit control objective hierarchy • Estimation of model uncertainty Currently (in industry) still … • … no guarantees for stability • … often approximate optimization methods • … not all support state -space models S ignal processing • … no explicit use of model uncertainty in controller design I dentification S ystem T heory 18 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 1 : Introduction bert.pluymers@esat.kuleuven.be

  24. MPC Formulation • Overview • Motivating Example • MPC Paradigm • History • Mathematical Form. Basic ingredients : • MPC Basics • prediction model to predict plant response to future input sequence • (finite,) sliding window (receding horizon control) • parameterization of future input sequence into finite number of parameters • discrete-time : inputs at discrete time steps • continuous-time : weighted sum of basis functions • optimization of future input sequence • reference trajectory • constraints S ignal processing I dentification S ystem T heory 19 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 1 : Introduction bert.pluymers@esat.kuleuven.be

  25. MPC Formulation • Overview • Motivating Example • MPC Paradigm • History • Mathematical Form. • MPC Basics S ignal processing I dentification S ystem T heory 20 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 1 : Introduction bert.pluymers@esat.kuleuven.be

  26. MPC Formulation • Overview • Motivating Example • MPC Paradigm • History • Mathematical Form. Assumptions / simplifications : • MPC Basics • no plant-model mismatch : • no disturbance inputs • all states are measured (or estimation errors are negligible) • no sensor noise . . . seem trivial issues but form essential difficulties in applications . . . S ignal processing I dentification S ystem T heory 21 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 1 : Introduction bert.pluymers@esat.kuleuven.be

  27. Theoretical Formulation (cfr. CACSD) • Overview • Motivating Example • MPC Paradigm • History • Mathematical Form. • MPC Basics • future window of length ∞ • impossible to solve, because . . . • infinite number of optimization variables • infinite number of inequality constraints S ignal processing I dentification • infinite number of equality constraints S ystem T heory 22 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 1 : Introduction bert.pluymers@esat.kuleuven.be

  28. Formulation 1 • Overview • Motivating Example • MPC Paradigm • History • Mathematical Form. • MPC Basics • still future window of length ∞ , BUT • quadratic cost function • no input or state constraints • linear model S ignal processing • Optimal solution has the form u k = -Kx k I dentification • Find K by solving Ricatti equation → LQR controller S ystem T heory 23 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 1 : Introduction bert.pluymers@esat.kuleuven.be

  29. Formulation 1 : LQR • Overview • Motivating Example • MPC Paradigm • History • Mathematical Form. PRO • MPC Basics • explicit, linear solution • low online computational complexity CON • constraints not taken into account • linear model assumption • only quadratic cost functions • no predictive capacity S ignal processing I dentification S ystem T heory 24 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 1 : Introduction bert.pluymers@esat.kuleuven.be

  30. Formulation 2 • Overview • Motivating Example • MPC Paradigm • History • Mathematical Form. • MPC Basics • changes : • keep all constraints etc. • reduce horizon to length N • solution obtainable through dynamic optimization S ignal processing • only u 0 is applied, in order to obtain feedback at each k about x k I dentification S ystem T heory 25 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 1 : Introduction bert.pluymers@esat.kuleuven.be

  31. Formulation 2 : Classic MPC • Overview • Motivating Example • MPC Paradigm • History • Mathematical Form. PRO • MPC Basics • takes constraints into account • proactive behaviour • wide range of (convex) cost functions possible • also for nonlinear models (but convex ?) CON • high online computational complexity • no explicit solution • feasibility ? • stability ? • robustness ? S ignal processing I dentification • In what follows, we will concentrate on this formulation. S ystem T heory 26 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 1 : Introduction bert.pluymers@esat.kuleuven.be

  32. Formulation 3 • Overview • Motivating Example • MPC Paradigm • History • Mathematical Form. • MPC Basics • linear form of feedback law is enforced • problem can be recast as a convex (LMI-based) optimization problem S ignal processing I dentification more on this later . . . S ystem T heory 27 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 1 : Introduction bert.pluymers@esat.kuleuven.be

  33. Summary • Overview • Motivating Example Formulation 1 • MPC Paradigm • History • infinite horizon • Mathematical Form. • no constraints • MPC Basics • explicit solution • → LQR Formulation 2 • finite horizon • constraints • no explicit solution • → Classic MPC Formulation 3 • infinite horizon • constraints • explicit solution enforced S ignal processing I dentification • → has elements of LQR ánd MPC S ystem T heory 28 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 1 : Introduction bert.pluymers@esat.kuleuven.be

  34. Open vs. closed loop control • Overview • Motivating Example • MPC Paradigm • History • Mathematical Form. • MPC Basics • Open loop : no state/output feedback : feedforward control • Closed loop : state/output feedback : e.g. LQR MPC is a mix of both : • internally optimizing an open loop finite horizon control problem • but at each k there is state feedback to compensate unmodelled dynamics and disturbance inputs → closed loop control paradigm. • has implications on e.g stability analysis • Is of essential importance in Robust MPC, more on this later… S ignal processing I dentification S ystem T heory 29 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 1 : Introduction bert.pluymers@esat.kuleuven.be

  35. Standard MPC Algorithm • Overview • Motivating Example • MPC Paradigm 1. Assume current time = 0 • History • Mathematical Form. 2. Measure or estimate x 0 and solve for u N and x N : • MPC Basics 3. Apply u o 0 and go to step 1 Remarks : • : Terminal state cost and constraint • : some kind of norm function S ignal processing I dentification • Sliding Window S ystem T heory 30 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 1 : Introduction bert.pluymers@esat.kuleuven.be

  36. MPC design choices • Overview • Motivating Example • MPC Paradigm • History • Mathematical Form. • MPC Basics 1.prediction model 2. cost function • norm • horizon N • terminal state cost 3. constraints • typical input/state constraints • terminal constraint S ignal processing I dentification S ystem T heory 31 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 1 : Introduction bert.pluymers@esat.kuleuven.be

  37. Prediction Model • Overview • Motivating Example • MPC Paradigm • Input/Output or State-Space ? • History • Mathematical Form. • I/O restricted to stable, linear plants • MPC Basics • Hence SS-models • Type of model determines class of MPC algorithm • Linear model : Linear MPC • Non-linear model : Non-linear MPC (or NMPC) • Linear model with uncertainties : Robust MPC • BUT : MPC is always a non-linear feedback law due to the constraints • Type of model determines class of involved optimization problem • Linear models lead to most efficiently solvable opt.-problems S ignal processing • Choose simplest model that fits the real plant ‘sufficiently well’ I dentification S ystem T heory 32 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 1 : Introduction bert.pluymers@esat.kuleuven.be

  38. Cost Function • Overview • Motivating Example • MPC Paradigm • History • Mathematical Form. General Cost Function: • MPC Basics Design Functions and Parameters: 1. 2. Horizon N 3. F (x) 4. Reference Trajectory S ignal processing I dentification S ystem T heory 33 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 1 : Introduction bert.pluymers@esat.kuleuven.be

  39. Cost Function • Overview • Motivating Example • MPC Paradigm • History • Mathematical Form. • MPC Basics S ignal processing I dentification S ystem T heory 34 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 1 : Introduction bert.pluymers@esat.kuleuven.be

  40. Cost Function • Overview • Motivating Example • MPC Paradigm • History • Mathematical Form. • MPC Basics S ignal processing I dentification S ystem T heory 35 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 1 : Introduction bert.pluymers@esat.kuleuven.be

  41. Cost Function • Overview • Motivating Example • MPC Paradigm • History • Mathematical Form. • MPC Basics S ignal processing I dentification S ystem T heory 36 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 1 : Introduction bert.pluymers@esat.kuleuven.be

  42. Constraints • Overview • Motivating Example • MPC Paradigm • History • Mathematical Form. • MPC Basics S ignal processing I dentification S ystem T heory 37 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 1 : Introduction bert.pluymers@esat.kuleuven.be

  43. Constraints • Overview • Motivating Example • MPC Paradigm • History • Mathematical Form. • MPC Basics S ignal processing I dentification S ystem T heory 38 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 1 : Introduction bert.pluymers@esat.kuleuven.be

  44. Constraints • Overview • Motivating Example • MPC Paradigm • History • Mathematical Form. • MPC Basics S ignal processing I dentification S ystem T heory 39 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 1 : Introduction bert.pluymers@esat.kuleuven.be

  45. Constraints • Overview • Motivating Example • MPC Paradigm • History • Mathematical Form. • MPC Basics S ignal processing I dentification S ystem T heory 40 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 1 : Introduction bert.pluymers@esat.kuleuven.be

  46. Terminal State Constraints • Overview • Motivating Example • MPC Paradigm • History • Mathematical Form. • MPC Basics S ignal processing I dentification S ystem T heory 41 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 1 : Introduction bert.pluymers@esat.kuleuven.be

  47. Reference Insertion • Overview • Motivating Example • MPC Paradigm • History • Mathematical Form. • MPC Basics S ignal processing I dentification S ystem T heory 42 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 1 : Introduction bert.pluymers@esat.kuleuven.be

  48. Reference Insertion • Overview • Motivating Example • MPC Paradigm • History • Mathematical Form. • MPC Basics S ignal processing I dentification S ystem T heory 43 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 1 : Introduction bert.pluymers@esat.kuleuven.be

  49. Reference Insertion • Overview • Motivating Example • MPC Paradigm • History • Mathematical Form. • MPC Basics S ignal processing I dentification S ystem T heory 44 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 1 : Introduction bert.pluymers@esat.kuleuven.be

  50. Reference Insertion • Overview • Motivating Example • MPC Paradigm • History • Mathematical Form. • MPC Basics S ignal processing I dentification S ystem T heory 45 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 1 : Introduction bert.pluymers@esat.kuleuven.be

  51. Exercise Sessions • Overview • Motivating Example • MPC Paradigm • History • Mathematical Form. • Ex. 1 : Optimization oriented • MPC Basics • Ex. 2 : MPC oriented • Ex. 3 : real-life MPC/optimization problem Evaluation • (brief !) report (groups of 2) • oral examination → insight ! S ignal processing I dentification S ystem T heory 46 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 1 : Introduction bert.pluymers@esat.kuleuven.be

  52. • Overview • Motivating Example • MPC Paradigm • History • Mathematical Form. • MPC Basics S ignal processing I dentification S ystem T heory 47 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 1 : Introduction bert.pluymers@esat.kuleuven.be

  53. H0K03a : Advanced Process Control Model-based Predictive Control 2 : Dynamic Optimization Bert Pluymers Prof. Bart De Moor Katholieke Universiteit Leuven, Belgium Faculty of Engineering Sciences Department of Electrical Engineering (ESAT) Research Group SCD-SISTA H0k03a : Advanced Process Control – Model-based Predictive Control 2 : Dynamic Optimization bert.pluymers@esat.kuleuven.be

  54. Overview • Overview • Optimization Basics • Convex Optimization • Dynamic Optimization • Optimization Algorithms Lesson 2 : Dynamic Optimization • Optimization basics • Convex Optimization • Dynamic Optimization • Optimization Algorithms S ignal processing I dentification S ystem T heory 1 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 2 : Dynamic Optimization bert.pluymers@esat.kuleuven.be

  55. Notation • Overview • Optimization Basics • Convex Optimization General form : • Dynamic Optimization • Optimization Algorithms Legend : • : vector of optimization variables • : objective function / cost function • : equality constraints • : inequality constraints • : solution to optimization problem S ignal processing I dentification • : optimal function value S ystem T heory 2 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 2 : Dynamic Optimization bert.pluymers@esat.kuleuven.be

  56. Gradient & Hessian • Overview • Optimization Basics • Convex Optimization Gradient : • Dynamic Optimization • Optimization Algorithms (points in direction of steepest ascent) Hessian : (gives information about local curvature of ) S ignal processing I dentification S ystem T heory 3 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 2 : Dynamic Optimization bert.pluymers@esat.kuleuven.be

  57. Gradient & Hessian • Overview • Optimization Basics • Convex Optimization Example : • Dynamic Optimization • Optimization Algorithms Gradients for different Eigenvectors of hessian at the origin ( ) S ignal processing I dentification S ystem T heory 4 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 2 : Dynamic Optimization bert.pluymers@esat.kuleuven.be

  58. Unconstrained Optimality Conditions • Overview • Optimization Basics • Convex Optimization Necessary condition for optimality of • Dynamic Optimization • Optimization Algorithms Sufficient conditions for minimum positive definite Classification of optima : positive definite minimum indefinite saddle point S ignal processing I dentification negative definite maximum S ystem T heory 5 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 2 : Dynamic Optimization bert.pluymers@esat.kuleuven.be

  59. Lagrange Multipliers • Overview • Optimization Basics • Convex Optimization • Dynamic Optimization Introduction of Lagrange multipliers leads to Lagrangian : • Optimization Algorithms with Lagrange multipliers of the ineq. constraints Lagrange multipliers of the eq. constriants Constrained optimum can be found as S ignal processing I dentification Minimization over but Maximization over !!!! S ystem T heory 6 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 2 : Dynamic Optimization bert.pluymers@esat.kuleuven.be

  60. Lagrange Multipliers • Overview • Optimization Basics • Convex Optimization • Dynamic Optimization Constrained optimum can be found as • Optimization Algorithms First-order optimality conditions in Gradient of Gradient of Gradient of eq. ineq. S ignal processing I dentification Interpretation ??? S ystem T heory 7 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 2 : Dynamic Optimization bert.pluymers@esat.kuleuven.be

  61. Lagrange Multipliers • Overview • Optimization Basics • Convex Optimization • Dynamic Optimization • Optimization Algorithms S ignal processing I dentification S ystem T heory 8 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 2 : Dynamic Optimization bert.pluymers@esat.kuleuven.be

  62. Lagrange Multipliers • Overview • Optimization Basics • Convex Optimization • Dynamic Optimization • Optimization Algorithms S ignal processing I dentification S ystem T heory 9 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 2 : Dynamic Optimization bert.pluymers@esat.kuleuven.be

  63. Lagrange Multipliers • Overview • Optimization Basics • Convex Optimization • Dynamic Optimization • Optimization Algorithms S ignal processing I dentification S ystem T heory 10 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 2 : Dynamic Optimization bert.pluymers@esat.kuleuven.be

  64. Lagrange Duality • Overview • Optimization Basics • Convex Optimization • Dynamic Optimization • Optimization Algorithms S ignal processing I dentification S ystem T heory 11 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 2 : Dynamic Optimization bert.pluymers@esat.kuleuven.be

  65. Karush-Kuhn-Tucker Conditions • Overview • Optimization Basics • Convex Optimization • Dynamic Optimization From previous considerations we can now state • Optimization Algorithms necessary conditions for constrained optimality : These are called the KKT conditions . S ignal processing I dentification S ystem T heory 12 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 2 : Dynamic Optimization bert.pluymers@esat.kuleuven.be

  66. Optimization Tree • Overview • Optimization Basics • Convex Optimization Optimization • Dynamic Optimization • Optimization Algorithms discrete continuous unconstrained constrained non-convex convex optimization optimization S ignal processing I dentification NLP QP SOCP SDP LP S ystem T heory 13 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 2 : Dynamic Optimization bert.pluymers@esat.kuleuven.be

  67. Convex Optimization • Overview • Optimization Basics • Convex Optimization An optimization problem of the form • Dynamic Optimization • Optimization Algorithms is convex iff for any two feasible points : • is feasible • This is satisfied iff • `the cost function is a convex function • the equality constraints or linear or absent S ignal processing I dentification • the inequality constraints define a convex region S ystem T heory 14 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 2 : Dynamic Optimization bert.pluymers@esat.kuleuven.be

  68. Convex Optimization • Overview • Optimization Basics • Convex Optimization • Dynamic Optimization Importance of convexity : • Optimization Algorithms • no local minima, one global optimum • under certain conditions, primal and dual have same solution • efficient solvers exist • polynomial worst-case execution time • guaranteed precision S ignal processing I dentification S ystem T heory 15 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 2 : Dynamic Optimization bert.pluymers@esat.kuleuven.be

  69. From LP to SDP • Overview generality • Optimization Basics • Convex Optimization • Dynamic Optimization • Optimization Algorithms SDP Semi-Definite Programming SOCP Second Order Cone Progr. QP Quadratic Programming LP Linear Programming computational efficiency S ignal processing I dentification S ystem T heory 16 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 2 : Dynamic Optimization bert.pluymers@esat.kuleuven.be

  70. Linear Programming (LP) • Overview • Optimization Basics • Convex Optimization General form : • Dynamic Optimization • Optimization Algorithms Remarks : • always convex • optimal solution always at a corner of ineq. constraints S ignal processing I dentification • typically used in finance / economics / management S ystem T heory 17 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 2 : Dynamic Optimization bert.pluymers@esat.kuleuven.be

  71. Linear Programming (LP) • Overview • Optimization Basics • Convex Optimization Eliminating equality constraints : • Dynamic Optimization • Optimization Algorithms Reparametrize optimization vector : Leading to S ignal processing I dentification S ystem T heory 18 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 2 : Dynamic Optimization bert.pluymers@esat.kuleuven.be

  72. Quadratic Programming (QP) • Overview • Optimization Basics • Convex Optimization General form : • Dynamic Optimization • Optimization Algorithms Remarks : • convex iff • LP is a special case of QP (imagine ) • Used in all domains of engineering S ignal processing I dentification S ystem T heory 19 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 2 : Dynamic Optimization bert.pluymers@esat.kuleuven.be

  73. Second-Order Cone Programming (SOCP) • Overview • Optimization Basics • Convex Optimization General form : • Dynamic Optimization • Optimization Algorithms SOC constraint Remarks : • Always convex • Second-Order, Ice-Cream, Lorentz cone : • S ignal processing I dentification • Engineering applications with sum-of-squares, S ystem T heory robust LP, robust QP 20 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 2 : Dynamic Optimization bert.pluymers@esat.kuleuven.be

  74. Second-Order Cone Programming (SOCP) • Overview • Optimization Basics • Convex Optimization QP as special case of SOCP : • Dynamic Optimization • Optimization Algorithms Rewrite this as which is equivalent to By introducing an additional variable we get the SOCP S ignal processing I dentification S ystem T heory 21 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 2 : Dynamic Optimization bert.pluymers@esat.kuleuven.be

  75. Semi-Definite Programming (SDP) • Overview • Optimization Basics • Convex Optimization General form : • Dynamic Optimization • Optimization Algorithms with Remarks : • means that should be positive semi-definite • means that should be pos. semi-def. • always convex : • ineq. constraints called LMI’s : L inear M atrix I neq. • LMI’s arise in many applications of S ignal processing I dentification Systems & Control Theory S ystem T heory 22 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 2 : Dynamic Optimization bert.pluymers@esat.kuleuven.be

  76. Semi-Definite Programming (SDP) • Overview • Optimization Basics • Convex Optimization convexity : • Dynamic Optimization • Optimization Algorithms Easily verified : hence and therefore S ignal processing I dentification which means that LMI’s are convex constraints . S ystem T heory 23 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 2 : Dynamic Optimization bert.pluymers@esat.kuleuven.be

  77. Semi-Definite Programming (SDP) • Overview • Optimization Basics • Convex Optimization Schur Complement : • Dynamic Optimization • Optimization Algorithms is equivalent with More general : Remarks : • Originally developed in a statistical framework • Today widely used in S&C in order to reformulate S ignal processing I dentification problems involving eigenvalues as an LMI. S ystem T heory 24 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 2 : Dynamic Optimization bert.pluymers@esat.kuleuven.be

  78. Semi-Definite Programming (SDP) • Overview • Optimization Basics • Convex Optimization SOCP as special case of SDP : • Dynamic Optimization • Optimization Algorithms is equivalent with (by using Schur complement) : ( exercise : apply Schur complement to LMI and reconstruct SOC constraint ) S ignal processing I dentification S ystem T heory 25 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 2 : Dynamic Optimization bert.pluymers@esat.kuleuven.be

  79. Convexity = SDP ? • Overview • Optimization Basics • Convex Optimization Formulated as SDP Convex optimization • Dynamic Optimization • Optimization Algorithms Convex optimization formulatable as SDP Example : S ignal processing I dentification S ystem T heory 26 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 2 : Dynamic Optimization bert.pluymers@esat.kuleuven.be

  80. Convexity ≠ SDP ! • Overview • Optimization Basics • Convex Optimization • Dynamic Optimization convex optimization • Optimization Algorithms convexity difficult to exploit (computationally) SDP SOCP QP structure easily exploitable LP (many toolboxes available) → significant efficiency gains ! S ignal processing I dentification S ystem T heory 27 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 2 : Dynamic Optimization bert.pluymers@esat.kuleuven.be

  81. MPC Paradigm • Overview • Optimization Basics • Convex Optimization • Dynamic Optimization • At every discrete time instant , given information about • Optimization Algorithms the current system state , calculate an ‘optimal’ input sequence over a finite time horizon : N N • Apply the first input to the real system S ignal processing I dentification • Repeat at the next time instant , using new state S ystem T heory measurements / estimates. 28 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 2 : Dynamic Optimization bert.pluymers@esat.kuleuven.be

  82. Dynamic Programming • Overview • Optimization Basics • Convex Optimization • Dynamic Optimization • Optimization Algorithms • Finding the optimal input sequence is done by means of Dynamic Programming • Definition * : “DP is a class of solution methods for solving sequential decision problems with a compositional cost structure” • Invented by Richard Bellman (1920-1984) in 1953 S ignal processing I dentification S ystem T heory 29 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 2 : Dynamic Optimization bert.pluymers@esat.kuleuven.be

  83. Dynamic Programming • Overview • Optimization Basics • Convex Optimization • Dynamic Optimization Example 1 : The darts problem * : • Optimization Algorithms “Obtain a score of 301 as fast as possible while beginning and ending in a double.” http://plus.maths.org/issue3/dynamic/ • Decision : next area towards which to throw the dart S ignal processing • Cost : time I dentification S ystem T heory 30 * D. Kohler, Journal of the Operational Research Society , 1982. A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 2 : Dynamic Optimization bert.pluymers@esat.kuleuven.be

  84. Dynamic Programming • Overview • Optimization Basics • Convex Optimization • Dynamic Optimization Example 2 : DNA sequence allignment : • Optimization Algorithms G A A T T C A G T T A (sequence #1) G G A T C G A (sequence #2) • Decisions : which nucleotides to match • Cost : e.g. based on substitution / insertion prob. • Algorithms : Baum/Welch, Waterman/Smith, … S ignal processing I dentification S ystem T heory 31 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 2 : Dynamic Optimization bert.pluymers@esat.kuleuven.be

  85. Dynamic Programming in MPC • Overview • Optimization Basics “ Series of sequential decisions ” : • Convex Optimization • Dynamic Optimization measured • Optimization Algorithms Optimization variables Typical optimization problem : S ignal processing I dentification → standard QP formulation ? S ystem T heory 32 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 2 : Dynamic Optimization bert.pluymers@esat.kuleuven.be

  86. Linear MPC as standard QP • Overview • Optimization Basics Optimization vector : • Convex Optimization • Dynamic Optimization • Optimization Algorithms Cost function : For convexity hence . S ignal processing I dentification S ystem T heory 33 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 2 : Dynamic Optimization bert.pluymers@esat.kuleuven.be

  87. Linear MPC as standard QP • Overview • Optimization Basics • Convex Optimization • Dynamic Optimization Equality constraints • Optimization Algorithms with Sparsity : many entries in equal to 0 S ignal processing I dentification S ystem T heory 34 A utomation H0k03a : Advanced Process Control – Model-based Predictive Control 2 : Dynamic Optimization bert.pluymers@esat.kuleuven.be

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend