introduction to green functions
play

Introduction to Green functions Stefan Kurth 1. Universidad del Pa - PowerPoint PPT Presentation

Outline Green functions in mathematics Green functions for many-body systems in equilibrium Non-equilibrium Green functions Introduction to Green functions Stefan Kurth 1. Universidad del Pa s Vasco UPV/EHU, San Sebasti an, Spain 2.


  1. Outline Green functions in mathematics Green functions for many-body systems in equilibrium Non-equilibrium Green functions Introduction to Green functions Stefan Kurth 1. Universidad del Pa´ ıs Vasco UPV/EHU, San Sebasti´ an, Spain 2. IKERBASQUE, Basque Foundation for Science, Bilbao, Spain 3. European Theoretical Spectroscopy Facility (ETSF), www.etsf.eu Benasque 2012: S. Kurth Introduction to Green functions

  2. Outline Green functions in mathematics Green functions for many-body systems in equilibrium Non-equilibrium Green functions Outline Green functions in mathematics Many-particle Green functions in equilibrium Zero temperature formalism One-particle Green function Response functions and two-particle Green functions Finite temperature formalism Non-equilibrium Green functions Keldysh contour and Kadanoff-Baym equations Summary Benasque 2012: S. Kurth Introduction to Green functions

  3. Outline Green functions in mathematics Green functions for many-body systems in equilibrium Non-equilibrium Green functions Green functions in mathematics consider inhomogeneous differential equation (1D for simplicity) ˆ D x y ( x ) = f ( x ) where ˆ D x is linear differential operator in x . Example: damped harmonic oscillator ˆ d 2 d x 2 + γ d d x + ω 2 D x = general solution of inhomogeneous equation: y ( x ) = y hom ( x ) + y spec ( x ) where y hom is solution of the homogeneous eqn. ˆ D x y hom ( x ) = 0 and y spec ( x ) is any special solution of the inhomogeneous equation. Benasque 2012: S. Kurth Introduction to Green functions

  4. Outline Green functions in mathematics Green functions for many-body systems in equilibrium Non-equilibrium Green functions Green functions in mathematics (cont.) how to obtain a special solution of the inhomogeneous equation for any inhomogeneity f ( x ) ? first find the solution of the following equation D x G ( x, x ′ ) = δ ( x − x ′ ) ˆ This defines the Green function G ( x, x ′ ) corresponding to the operator ˆ D x . Once G ( x, x ′ ) is found, a special solution can be constructed by � d x ′ G ( x, x ′ ) f ( x ′ ) y spec ( x ) = d x ′ G ( x, x ′ ) f ( x ′ ) = d x ′ δ ( x − x ′ ) f ( x ′ ) = f ( x ) check: ˆ � � D x Benasque 2012: S. Kurth Introduction to Green functions

  5. Outline Green functions in mathematics Zero-temperature formalism Green functions for many-body systems in equilibrium Finite-temperature formalism Non-equilibrium Green functions Hamiltonian of interacting electrons consider system of interacting electrons in static external potential v ext ( r ) described by Hamiltonian ˆ H −∇ 2 � � � H = ˆ ˆ T + ˆ V ext + ˆ d 3 x ˆ ˆ ψ † ( x ) W = 2 + v ext ( r ) ψ ( x ) +1 � � 1 d 3 x ′ ˆ ψ † ( x ) ˆ ψ ( x ′ ) ˆ ˆ d 3 x ψ † ( x ′ ) ψ ( x ) | r − r ′ | 2 x = ( r , σ ) : space-spin coordinate ψ † ( x ) , ˆ ˆ ψ ( x ) : electron creation and annihilation operators Benasque 2012: S. Kurth Introduction to Green functions

  6. Outline Green functions in mathematics Zero-temperature formalism Green functions for many-body systems in equilibrium Finite-temperature formalism Non-equilibrium Green functions Hamiltonian of interacting electrons consider system of interacting electrons in static external potential v ext ( r ) described by Hamiltonian ˆ H −∇ 2 � � � H = ˆ ˆ T + ˆ V ext + ˆ d 3 x ˆ ˆ ψ † ( x ) W = 2 + v ext ( r ) ψ ( x ) +1 � � 1 d 3 x ′ ˆ ψ † ( x ) ˆ ψ ( x ′ ) ˆ ˆ d 3 x ψ † ( x ′ ) ψ ( x ) | r − r ′ | 2 x = ( r , σ ) : space-spin coordinate ψ † ( x ) , ˆ ˆ ψ ( x ) : electron creation and annihilation operators Benasque 2012: S. Kurth Introduction to Green functions

  7. Outline Green functions in mathematics Zero-temperature formalism Green functions for many-body systems in equilibrium Finite-temperature formalism Non-equilibrium Green functions One-particle Green functions at zero temperature Time-ordered 1-particle Green function at zero temperature 0 | ˆ T [ ˆ ψ ( x , t ) H ˆ iG ( x , t ; x ′ , t ′ ) = � Ψ N ψ † ( x ′ , t ′ ) H ] | Ψ N 0 � � Ψ N 0 | Ψ N 0 � 0 � : N -particle ground state of ˆ H : ˆ | Ψ N H | Ψ N 0 � = E N 0 | Ψ N 0 � ψ ( x , t ) H = exp( i ˆ ˆ Ht ) ˆ ψ ( x ) exp( − i ˆ Ht ) : electron annihilation operator in Heisenberg picture ˆ T : time-ordering operator T [ ˆ ˆ ψ ( x , t ) H ˆ ψ ( x ′ , t ′ ) † H ] = H − θ ( t ′ − t ) ˆ θ ( t − t ′ ) ˆ ψ ( x , t ) H ˆ ψ ( x ′ , t ′ ) † ψ ( x ′ , t ′ ) † H ˆ ψ ( x , t ) H Benasque 2012: S. Kurth Introduction to Green functions

  8. Outline Green functions in mathematics Zero-temperature formalism Green functions for many-body systems in equilibrium Finite-temperature formalism Non-equilibrium Green functions One-particle Green functions at zero temperature Time-ordered 1-particle Green function at zero temperature 0 | ˆ T [ ˆ ψ ( x , t ) H ˆ iG ( x , t ; x ′ , t ′ ) = � Ψ N ψ † ( x ′ , t ′ ) H ] | Ψ N 0 � � Ψ N 0 | Ψ N 0 � 0 � : N -particle ground state of ˆ H : ˆ | Ψ N H | Ψ N 0 � = E N 0 | Ψ N 0 � ψ ( x , t ) H = exp( i ˆ ˆ Ht ) ˆ ψ ( x ) exp( − i ˆ Ht ) : electron annihilation operator in Heisenberg picture ˆ T : time-ordering operator T [ ˆ ˆ ψ ( x , t ) H ˆ ψ ( x ′ , t ′ ) † H ] = H − θ ( t ′ − t ) ˆ θ ( t − t ′ ) ˆ ψ ( x , t ) H ˆ ψ ( x ′ , t ′ ) † ψ ( x ′ , t ′ ) † H ˆ ψ ( x , t ) H Benasque 2012: S. Kurth Introduction to Green functions

  9. Outline Green functions in mathematics Zero-temperature formalism Green functions for many-body systems in equilibrium Finite-temperature formalism Non-equilibrium Green functions One-particle Green functions at zero temperature Time-ordered 1-particle Green function at zero temperature 0 | ˆ T [ ˆ ψ ( x , t ) H ˆ iG ( x , t ; x ′ , t ′ ) = � Ψ N ψ † ( x ′ , t ′ ) H ] | Ψ N 0 � � Ψ N 0 | Ψ N 0 � 0 � : N -particle ground state of ˆ H : ˆ | Ψ N H | Ψ N 0 � = E N 0 | Ψ N 0 � ψ ( x , t ) H = exp( i ˆ ˆ Ht ) ˆ ψ ( x ) exp( − i ˆ Ht ) : electron annihilation operator in Heisenberg picture ˆ T : time-ordering operator T [ ˆ ˆ ψ ( x , t ) H ˆ ψ ( x ′ , t ′ ) † H ] = H − θ ( t ′ − t ) ˆ θ ( t − t ′ ) ˆ ψ ( x , t ) H ˆ ψ ( x ′ , t ′ ) † ψ ( x ′ , t ′ ) † H ˆ ψ ( x , t ) H Benasque 2012: S. Kurth Introduction to Green functions

  10. Outline Green functions in mathematics Zero-temperature formalism Green functions for many-body systems in equilibrium Finite-temperature formalism Non-equilibrium Green functions Green functions as propagator t 1 < t 2 t 2 < t 1 annihilate electron (create hole) at create electron at time t 2 at position r 2 and propagate; time t 1 at position r 1 ; then create electron (annihilate then annihilate electron at time t 1 at position r 1 hole) at time t 2 at position r 2 Benasque 2012: S. Kurth Introduction to Green functions

  11. Outline Green functions in mathematics Zero-temperature formalism Green functions for many-body systems in equilibrium Finite-temperature formalism Non-equilibrium Green functions Observables from Green functions Information which can be extracted from Green functions ground-state expectation values of any single-particle operator ˆ d 3 x ˆ ψ † ( x ) o ( x ) ˆ � O = ψ ( x ) σ ˆ ψ † ( r σ ) ˆ e.g., density operator ˆ n ( r ) = � ψ ( r σ ) ground-state energy of the system Galitski-Migdal formula ∂t − ∇ 2 0 = − i � � i ∂ � E N d 3 x lim G ( r σ, t ; r ′ σ, t ′ ) t ′ → t + lim 2 2 r ′ → r spectrum of system: direct photoemission, inverse photoemission Benasque 2012: S. Kurth Introduction to Green functions

  12. Outline Green functions in mathematics Zero-temperature formalism Green functions for many-body systems in equilibrium Finite-temperature formalism Non-equilibrium Green functions Other kind of Green functions Retarded and advanced Green functions iG R ( x , t ; x ′ , t ′ ) = θ ( t − t ′ ) � Ψ N 0 |{ ˆ ψ ( x , t ) H , ˆ ψ † ( x ′ , t ′ ) † H }| Ψ N 0 � iG A ( x , t ; x ′ , t ′ ) = − θ ( t ′ − t ) � Ψ N 0 |{ ˆ ψ ( x , t ) H , ˆ ψ † ( x ′ , t ′ ) H }| Ψ N 0 � Benasque 2012: S. Kurth Introduction to Green functions

  13. Outline Green functions in mathematics Zero-temperature formalism Green functions for many-body systems in equilibrium Finite-temperature formalism Non-equilibrium Green functions Spectral (Lehmann) representation of Green function N,k | Ψ N k �� Ψ N use completeness relation 1 = � k | − → iG ( x , t ; x ′ , t ′ ) � � = θ ( t − t ′ ) � i ( E N 0 − E N +1 )( t − t ′ ) g k ( x ) g ∗ k ( x ′ ) exp k k − θ ( t ′ − t ) )( t ′ − t ) � � � i ( E N 0 − E N − 1 f k ( x ′ ) f ∗ exp k ( x ) k k with quasiparticle amplitudes f k ( x ) = � Ψ N − 1 | ˆ ψ ( x ) | Ψ N 0 � k g k ( x ) = � Ψ N 0 | ˆ ψ ( x ) | Ψ N +1 � k note: G depends only on t − t ′ − → Fourier transform w.r.t. t − t ′ Benasque 2012: S. Kurth Introduction to Green functions

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend