introduction
play

Introduction So far, GR seems compatible with all observations. - PowerPoint PPT Presentation

Dark energy & Modified gravity in scalar-tensor theories David Langlois (APC, Paris) Introduction So far, GR seems compatible with all observations. Several motivations for exploring modified gravity Quantum gravity effects


  1. Dark energy & Modified gravity in scalar-tensor theories David Langlois (APC, Paris)

  2. Introduction • So far, GR seems compatible with all observations. • Several motivations for exploring modified gravity – Quantum gravity effects – Explain cosmological acceleration (or possibly dark matter) – Explore alternative gravitational theories – Testing gravity • Many models of dark energy & modified gravity: quintessence, K-essence, f(R) gravity, massive gravity … • Generalized framework for scalar-tensor theories, allowing for 2nd order derivatives in their Lagrangian

  3. Traditional scalar-tensor theories • Simplest extensions of GR: add a scalar field Z h i d 4 x √− g F ( φ ) (4) R − Z ( φ ) ∂ µ φ∂ µ φ − U ( φ ) S = + S m [ ψ m ; g µ ν ] • K-essence/ k-inflation : non standard kinetic term  M 2 � Z d 4 x √− g (4) R + P ( X, φ ) P S = 2 X ⌘ r µ φ r µ φ

  4. Higher order scalar-tensor theories • Traditional scalar-tensor theories : L ( r λ φ , φ ) • Generalized theories with second order derivatives L ( r µ r ν φ , r λ φ , φ ) • In general, they contain an extra degree of freedom , expected to lead to Ostrogradsky instabilities L (¨ q, ˙ q, q ) • But there are exceptions...

  5. Horndeski theories Horndeski 74 • Combination of the Lagrangians (a.k.a. Generalized Galileons) L H 2 = G 2 ( φ , X ) with X ⌘ r µ φ r µ φ L H 3 = G 3 ( φ , X ) ⇤ φ φ µ ν ⌘ r ν r µ φ 4 = G 4 ( φ , X ) (4) R − 2 G 4 X ( φ , X )( ⇤ φ 2 − φ µ ν φ µ ν ) L H 5 = G 5 ( φ , X ) (4) G µ ν φ µ ν + 1 3 G 5 X ( φ , X )( ⇤ φ 3 − 3 ⇤ φ φ µ ν φ µ ν + 2 φ µ ν φ µ σ φ ν L H σ ) • Second order equations of motion for the scalar field and the metric • They contain 1 scalar DOF and 2 tensor DOF. No dangerous extra DOF !

  6. Beyond Horndeski & DHOST theories • Extensions “beyond Horndeski” Gleyzes, DL, Piazza &Vernizzi ’14 σ ✏ µ 0 ν 0 ρ 0 σ � µ � µ 0 � νν 0 � ρρ 0 L bH ≡ F 4 ( � , X ) ✏ µ νρ 4 ≡ F 5 ( � , X ) ✏ µ νρσ ✏ µ 0 ν 0 ρ 0 σ 0 � µ � µ 0 � νν 0 � ρρ 0 � σσ 0 L bH 5 leading to third order equations of motion. • Earlier hint: disformal transformation of Einstein-Hilbert Zumalacarregui & Garcia-Bellido ‘13 • Even if EOM are higher order, no extra DOF if the Lagrangian is “ degenerate”. DL & K. Noui ‘15 DHOST theories (Degenerate Higher-Order Scalar-Tensor)

  7. Higher order scalar-tensor theories • Traditional theories: L ( r λ φ , φ ) • Generalized theories: L ( r µ r ν φ , r λ φ , φ ) Extra DOF Horndeski Degenerate Higher-Order Beyond Horndeski (GLPV) DHOST Scalar-Tensor

  8. Degenerate Lagrangians DL & K. Noui ‘1510 • Scalar-tensor theories : scalar field + metric • Simple toy model: φ ( x λ ) → φ ( t ) , g µ ν ( x λ ) → q ( t ) • Lagrangian L = 1 q + 1 q 2 + 1 φ 2 + b ¨ 2 a ¨ ˙ φ 2 − V ( φ , q ) φ ˙ 2 c ˙ 2 • Equations of motion are higher order (4th order if a nonzero, 3rd order if a=0)

  9. Degrees of freedom Q ≡ ˙ • Introduce the auxiliary variable φ L = 1 q + 1 q 2 + 1 Q 2 + b ˙ 2 Q 2 − V ( φ , q ) − λ ( Q − ˙ 2 a ˙ Q ˙ 2 c ˙ φ ) • Equations of motion a ¨ ˙ ˙ Q + b ¨ q = Q − λ φ = Q , λ = − V φ b ¨ Q + c ¨ q = − V q ✓ a ∂ 2 L • If the Hessian matrix ✓ ◆ ◆ b M ≡ = b c ∂ v a ∂ v b is invertible , one finds 3 DOF. [6 initial conditions]

  10. Degrees of freedom ✓ a • If the Hessian matrix ∂ 2 L ✓ ◆ ◆ b M ≡ = is degenerate, i.e. ∂ v a ∂ v b b c ac − b 2 = 0 then only 2 DOF (at most) . q + b ¨ ¨ [ can be absorbed in ] φ x ≡ ˙ ˙ φ c • Hamiltonian analysis : primary constraint and secondary constraint p a = ∂ L [ cannot be inverted ] ∂ v a ( v )

  11. Generalization (classical mechanics) Motohashi, Noui, Suyama, Yamaguchi & DL 1603 [See also Klein & Roest 1604] • Consider a general Lagrangian L (¨ φ α , ˙ q i , q i ) φ α , φ α ; ˙ α = 1 , · · · , n ; i = 1 , · · · , m In general, 2n+m DOF . But the n extra DOF can be eliminated by requiring: 1. Primary conditions (n primary constraints ) q i ˙ q j L ˙ q i ( L − 1 ) ˙ Q β = 0 L ˙ Q α − L ˙ Q α ˙ Q α ˙ q j ˙ 2. Secondary condition s (n secondary constraints) L ˙ φ β − L ˙ φ α = 0 if m = 0 Q α ˙ Q β ˙ • Third-order time derivatives... Motohashi, Suyama, Yamaguchi 1711

  12. Quadratic DHOST theories DL & Noui ’1510 • Consider all theories of the form d 4 x p� g Z h i (4) R + C µ νρσ S [ g, φ ] = f 2 r µ r ν φ r ρ r σ φ (2) where depends only on and . and C µ νρσ φ f 2 = f 2 ( X, φ ) r µ φ (2) • All possible contractions of ? φ µ ν φ ρσ e.g. g µ ν g ρσ φ µ ν φ ρσ = ( ⇤ φ ) 2 φ µ φ ν φ ρ φ σ φ µ ν φ ρσ = ( φ µ φ µ ν φ ν ) 2 or a A ( X, φ ) L (2) C µ νρσ X In summary: φ µ ν φ ρσ = A (2) = φ µ ν φ µ ν , = ( ⇤ φ ) 2 , L (2) L (2) L (2) = ( ⇤ φ ) φ µ φ µ ν φ ν 1 2 3 L (2) L (2) = ( φ µ φ µ ν φ ν ) 2 = φ µ φ µ ρ φ ρν φ ν , 4 5

  13. Quadratic DHOST theories • Lagrangians of the form DL & Noui ’1510 5 a A ( X, φ ) L (2) L = f 2 ( X, φ ) (4) R + X A A = I which depend on 6 arbitrary functions. • Degeneracy yields three conditions on the 6 functions. • Classification: 7 subclasses (4 with , 3 with ) f 2 6 = 0 f 2 = 0 [See also Crisostomi et al ‘1602; Ben Achour, DL & Noui ’1602; de Rham & Matas ‘1604] L H • This includes, in particular, and L bH 4 4 f 2 = G 4 , a 1 = − a 2 = 2 G 4 X + XF 4 , a 3 = − a 4 = 2 F 4

  14. Cubic DHOST theories [Ben Achour, Crisostomi, Koyama, DL, Noui & Tasinato ’1608] • Action of the form Z h i d 4 x √− g f 3 G µ ν φ µ ν + C µ νρσαβ S [ g, φ ] = φ µ ν φ ρσ φ αβ (3) 10 b i ( X, φ ) L (3) C µ νρσαβ X depends on eleven functions: φ µ ν φ ρσ φ αβ = (3) i i =1 L H L bH • This includes the Lagrangians and . 5 5 • 9 degenerate subclasses: 2 with , 7 with f 3 6 = 0 f 3 = 0 • 25 combinations of quadratic and cubic theories (out of 7x9) are degenerate.

  15. Disformal transformations • Transformations of the metric [Bekenstein ’93] → ˜ g µ ν = C ( X, φ ) g µ ν + D ( X, φ ) ∂ µ φ ∂ ν φ g µ ν − ˜ • Starting from an action , one can define the S [ φ , ˜ g µ ν ] new action S [ φ , g µ ν ] ≡ ˜ S [ φ , ˜ g µ ν = C g µ ν + D φ µ φ ν ] • Disformal transformation of quadratic DHOST theories ? " # Z L (2) X d 4 x (4) ˜ ˜ p ˜ a I ˜ S = g f 2 R + − ˜ ˜ I I The structure of DHOST theories is preserved and all seven subclasses are stable. [Ben Achour, DL & Noui ’1602]

  16. Disformal transformations • Stability under g µ ν − g µ ν = C g µ ν + D ∂ µ φ ∂ ν φ → ˜ Ben Achour, DHOST DL & Noui ’16 C ( X, φ ) , D ( X, φ ) Beyond Horndeski Gleyzes, DL, Piazza & C ( φ ) , D ( X, φ ) Vernizzi ‘14 Horndeski Bettoni & Liberati ‘13 C ( φ ) , D ( φ ) • When matter is included (with minimal coupling), two disformally related theories are physically inequivalent !

  17. Cosmology: Effective description of Dark Energy & Modified Gravity

  18. Theories Parametrized Effective Description Observational constraints

  19. Effective description of Dark Energy [ See e.g review: Gleyzes, DL & Vernizzi 1411.3712 ] • Restriction: single scalar field models • The scalar field defines a preferred slicing Constant time hypersurfaces = uniform field hypersurfaces φ = φ 3 φ = φ 2 φ = φ 1 • All perturbations embodied by the metric only

  20. Uniform scalar field slicing • 3+1 decomposition based on this preferred slicing • Basic ingredients – Unit vector normal to the hypersurfaces r µ φ n µ = � p � ( r φ ) 2 – Projection on the hypersurfaces: h µ ν = g µ ν + n µ n ν

  21. ADM formulation • ADM decomposition of spacetime ds 2 = − N 2 dt 2 + h ij dx i + N i dt dx j + N j dt � � � � N i Extrinsic curvature: 1 Nn µ � ˙ � K ij = h ij − D i N j − D j N i 2 N Intrinsic curvature: R ij h ij ˙ φ 2 ( t ) X ⌘ g µ ν r µ φ r ν φ = � N 2 • Generic Lagrangians of the form Z √ d 4 x N S g = h L ( N, K ij , R ij ; t )

  22. Homogeneous background & linear perturbations • Background ds 2 = − ¯ N 2 ( t ) dt 2 + a 2 ( t ) δ ij dx i dx j  ˙ � a ¯ a, ¯ j = 0 , N = ¯ K i Na δ i j , R i L ( a, ˙ N ) ≡ L j = N ( t ) ¯ j ≡ R j • Perturbations: N , δ K i j ≡ K i j − H δ i j , δ R i δ N ≡ N − ¯ i q A ≡ { N, K i j , R i • Expanding the Lagrangian with L ( q A ) j } ∂ 2 L δ q A + 1 L + ∂ L L ( q A ) = ¯ yields δ q A δ q B + . . . 2 ∂ q A ∂ q A ∂ q B • The quadratic action describes the dynamics of linear perturbations

  23. Horndeski & beyond Horndeski Gleyzes, DL, Piazza & Vernizzi ’13, • Quadratic action [notation: Bellini & Sawicki ‘14] dx 3 dt a 3 M 2  Z S (2) = i − δ K 2 + α K H 2 δ N 2 + 4 α B H δ K δ N j δ K j δ K i 2 ✓ √ ◆ � h + (1 + α T ) δ 2 + (1 + α H ) R δ N a 3 R α M ≡ d ln M 2 H dt α H α K α B α M α T Quintessence, X K-essence X X Kinetic braiding, DGP X X X Brans-Dicke, f(R) X X X X Horndeski X X X Beyond Horndeski X X X

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend