introduction
play

introduction hint and puzzle HFLAV16 introduction hint and puzzle - PowerPoint PPT Presentation

B D ( * ) from lattice QCD with domain-wall quarks Takashi Kaneko (KEK, SOKENDAI) for the JLQCD collaboration KEK-FF 2019, Feb 14-16, 2019 introduction hint and puzzle HFLAV16 introduction hint and puzzle HFLAV16


  1. B → D ( * ) ℓν from lattice QCD with domain-wall quarks Takashi Kaneko (KEK, SOKENDAI) for the JLQCD collaboration KEK-FF 2019, Feb 14-16, 2019

  2. introduction hint and puzzle HFLAV’16

  3. introduction hint and puzzle HFLAV’16 realistic lattice studies only with staggered-type light quarks B → Dℓν : Fermilab/MILC’15, HPQCD’15, HPQCD’17 (w ≥ 1) B → D*ℓν : Fermilab/MILC’14, HPQCD’17 (w=1) … and previous talk!

  4. introduction hint and puzzle HFLAV’16 realistic lattice studies only with staggered-type light quarks B → Dℓν : Fermilab/MILC’15, HPQCD’15, HPQCD’17 (w ≥ 1) B → D*ℓν : Fermilab/MILC’14, HPQCD’17 (w=1) … and previous talk! independent calculations are welcome

  5. JLQCD’s study w/ good chiral symmetry domain-wall quarks good chiral symmetry • simple renormalization • no O( a ) errors Fermilab/MILC B →D*ℓν ( w ≥1 )

  6. JLQCD’s study w/ good chiral symmetry domain-wall quarks good chiral symmetry • simple renormalization • no O( a ) errors Fermilab/MILC simulation parameters B →D*ℓν ( w ≥1 ) • a -1 ~ 2.5, 3.6, 4.5 GeV • M π ~ 230, 300, 400, 500 MeV • M π L ≥ 4 • a -1 ~ 4.5 GeV, M π ~ 230 MeV: on - going

  7. JLQCD’s study w/ good chiral symmetry domain-wall quarks good chiral symmetry • simple renormalization • no O( a ) errors Fermilab/MILC simulation parameters B →D*ℓν ( w ≥1 ) • a -1 ~ 2.5, 3.6, 4.5 GeV • M π ~ 230, 300, 400, 500 MeV • M π L ≥ 4 • a -1 ~ 4.5 GeV, M π ~ 230 MeV: on - going ⇒ preliminary results w/o extrapolations …

  8. JLQCD’s simulation relativistic lattice QCD w/ “relativistic” heavy quarks • simple renormalization • m Q < m b ⇒ need extrapolation m Q / m c = 1.25, 1.25 2 , … and m Q < 0.8 a -1

  9. JLQCD’s simulation relativistic lattice QCD w/ “relativistic” heavy quarks • simple renormalization • m Q < m b ⇒ need extrapolation m Q / m c = 1.25, 1.25 2 , … and m Q < 0.8 a -1 ⇔ EFT-based heavy quarks • NRQCD, Fermilab, RHQ, … • need matching to QCD often perturbative … • directly simulate m b

  10. JLQCD’s simulation relativistic lattice QCD w/ “relativistic” heavy quarks • simple renormalization • m Q < m b ⇒ need extrapolation m Q / m c = 1.25, 1.25 2 , … and m Q < 0.8 a -1 ⇔ EFT-based heavy quarks • NRQCD, Fermilab, RHQ, … • need matching to QCD often perturbative … • directly simulate m b independent studies w/ (very) different systematics

  11. B → D ( * ) ℓν form factors (FFs) In the SM ( ) ( ) ( ) ( ) ( ) ( ) ′ ′ ′ = + + − D p V B p v v h w v v h w µ + − µ µ ( ) ( ) ( ) ′ ′ ′ ′ ∗ ∗µ ρ σ ε = ε ε , D p V B p i v v h w µ µνρσ V ( ) ( ) ( ) ( ) ′ ′ ′ ∗ ∗ ε = ε + , 1 D p A B p w h w µ µ A 1 { } ( ) ( ) ′ ∗ − ε + v v h w v h w µ µ A A 2 2

  12. ratio method (Hashimoto et al. ’99) a standard way for precision calculation D ∗ B ∗ ( ) V µ (lat) D V B h w µ = → V ( ) ∗ (lat) h w D A B A µ A 1 µ

  13. ratio method (Hashimoto et al. ’99) a standard way for precision calculation D ∗ B ∗ ( ) V µ (lat) D V B h w µ = → V ( ) ∗ (lat) h w D A B A µ A 1 µ [ ] − ∆ † cancel  | , exp , B O M t B B

  14. ratio method (Hashimoto et al. ’99) a standard way for precision calculation D ∗ B ∗ ( ) V µ (lat) D V B h w µ = → V ( ) ∗ (lat) h w D A B A µ A 1 µ [ ] − ∆ † cancel cancel  | , exp , , B O M t Z Z B B A V

  15. ratio method (Hashimoto et al. ’99) a standard way for precision calculation D ∗ B ∗ ( ) V µ (lat) D V B h w µ = → V ( ) ∗ (lat) h w D A B A µ A 1 µ [ ] − ∆ † cancel cancel  | , exp , , B O M t Z Z B B A V  can calculate SM FFs w/o explicit renormalization  p B = 0 , | p D (*) | 2 = 0, 1, 2, 3, 4 in units of (2π/ L ) 2

  16. B →Dℓν form factors + vs − vs h w h w  mild dependence on a , M π , m Q ⇒ reasonably close to physical pt. larger m Q ⇒ larger h + [smaller h - ] ⇔ L 1 /2 m Q [ - L 4 /2 m Q ] L 1 , L 4 ≥ 0  typical accuracy: Δ h + ≤ 1 - 3%, Δ h - ~ 40 – 60 %

  17. B →D*ℓν form factors vs vs h w h w 1 A V  mild a , m Q , M π dependences / consistent w/ previous studies  typical accuracy: Δ h A 1 ~ 1 - 3%, Δ h V ~ 3 % ( ) ( ) ( ) ( ) ( ) ( ) ( ) ′ ′ ′ ′ ′ ′ ∗ ∗ ε ⇒ ε ⇒ ⊥ ε , , D p V B p h w D p A B p h w p µ µ V A 1

  18. B →D*ℓν form factors vs vs h w h w 2 3 A A  h + , h A 1 , h A 3 , h V ( →ξ ) ~ O (1) , h - , h A 2 ( → 0) ~ 0  typical accuracy: Δ h A 2 ≥ 40 %, Δ h A 3 ~ 20 - 30 % { } ( ) ( ) ( ) ( ) ( ) ′ ′ ∗ ε ⇒ , , , D p A B p h w h w h w µ A A A 1 2 3

  19. LQCD vs HQET+QCDSR Caprini-Lellouch-Neubert (CLN) parametrization of FFs  FFs w/ definite spin - parity quantum numbers  use NLO HQET relations (QCDSR input) ~ small NNLO in ratios

  20. LQCD vs HQET+QCDSR Caprini-Lellouch-Neubert (CLN) parametrization of FFs  FFs w/ definite spin - parity quantum numbers  use NLO HQET relations (QCDSR input) ~ small NNLO in ratios Bigi-Gambino-Schacht ‘17  comparison b/w HQET+QCDSR and LQCD available at that time

  21. LQCD vs HQET+QCDSR at zero recoil NLO HQET + QCDSR Bigi et al. ’17 Bernlochner et al. ‘17

  22. LQCD vs HQET+QCDSR at zero recoil NLO HQET + QCDSR Bigi et al. ’17 Bernlochner et al. ‘17 systematically lower / higher for A 1 / V 1 , S 1 / A 1 ???

  23. LQCD vs HQET+QCDSR at non-zero recoils HQET+QCDSR  HQET A 1 ( w )/ V 1 ( w ) + V ( w )/ V (1) dispersive bound ⇒ CLN A 1 ( w )

  24. LQCD vs HQET+QCDSR at non-zero recoils HQET+QCDSR  HQET A 1 ( w )/ V 1 ( w ) + V ( w )/ V (1) dispersive bound ⇒ CLN A 1 ( w )  CLN R 2 = ( rh A 2 + h A 3 ) / h A 1 : noisy at the moment  CLN R 1 = h V / h A 1 ⇒ Bernlochner et al. ’17: analysis of Belle unfolded / tagged data

  25. BGL vs CLN w/ Belle data R 1 = h V / h A 1 Boyd-Grinstein-Lebed (BGL) Bernlochner-Ligeti-Papucci-Robinson ’17 ⇒ |V cb | close to inclusive see also talk by Zoltan Ligeti CLN ⇒ lower than inclusive Bigi-Gambino-Schacht ’17 Grinstein-Kobach ‘17

  26. BGL vs CLN w/ Belle data R 1 = h V / h A 1 Boyd-Grinstein-Lebed (BGL) Bernlochner-Ligeti-Papucci-Robinson ’17 ⇒ |V cb | close to inclusive see also talk by Zoltan Ligeti CLN ⇒ lower than inclusive Bigi-Gambino-Schacht ’17 Grinstein-Kobach ‘17 new data @ a -1 ~4.5GeV w/ 5 m Q ’s

  27. BGL vs CLN w/ Belle data R 1 = h V / h A 1 Boyd-Grinstein-Lebed (BGL) Bernlochner-Ligeti-Papucci-Robinson ’17 ⇒ |V cb | close to inclusive see also talk by Zoltan Ligeti CLN ⇒ lower than inclusive Bigi-Gambino-Schacht ’17 Grinstein-Kobach ‘17  small a , m Q , M π dependence new data @ a -1 ~4.5GeV w/ 5 m Q ’s  consistent w/ CLN and “BGL” fits  Belle untagged ?

  28. BGL vs CLN w/ Belle data R 1 = h V / h A 1 Boyd-Grinstein-Lebed (BGL) Bernlochner-Ligeti-Papucci-Robinson ’17 ⇒ |V cb | close to inclusive see also talk by Zoltan Ligeti CLN ⇒ lower than inclusive talk by Paolo Gambino Bigi-Gambino-Schacht ’17 Grinstein-Kobach ‘17  small a , m Q , M π dependence new data @ a -1 ~4.5GeV w/ 5 m Q ’s  consistent w/ CLN and “BGL” fits  Belle untagged ?

  29. Summary JLQCD’s calculation of B → D ( * ) ℓν form factors  relativistic approach w/ chiral symmetric formulation ⇔ previous studies: very different systematics ⇒ Hashimoto ( B → X c ℓν , poster), Colquhoun ( B →πℓν , Sat)  extrapolation to the physical point: yet to be done mild a , M π , m Q dependences ⇔ reasonably controllable  interplay w/ phenomenology / experiment LQCD prediction of FFs ⇒ |V cb | , R ( D ( * ) ) • heavy quark scaling ⇔ data w/ different m Q ’s • FFs beyond the SM ⇒ NP search in the Belle II era •

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend