introduction
play

Introduction M : an oriented closed 3-manifold : 1 ( M ) PSL(2 , C - PowerPoint PPT Presentation

Quandle shadow coloring PSL(2,C) Chern-Simons


  1. 蒲谷祐一 (大阪市立大学 数学研究所) (井上 歩氏(東京工業大学大学院理工学研究科)との共同研究) Quandle による shadow coloring と PSL(2,C) 表現の体積と Chern-Simons 不変量 早稲田大学 2009 年 12 月 24 日 1

  2. Introduction M : an oriented closed 3-manifold ρ : π 1 ( M ) → PSL(2 , C ) : a rep. of the fund. group of M Vol( M, ρ ) ∈ R and CS( M, ρ ) ∈ R / π 2 Z are invariants of the representation ρ . When ρ is a discrete faithful rep. of a hyperbolic mfd M , then Vol and CS are the volume and the Chern-Simons invariant of the hyperbolic metric. 2

  3. The definition of Vol and CS are generalized to the case of manifolds with torus boundary e.g. knot complements. A formula of i (Vol + i CS) ∈ C / π 2 Z was given by Neumann in terms of triangulations of 3-manifolds. We give a formula in terms of knot diagrams by using the quandle formed by parabolic elements of PSL(2 , C ). 3

  4. Quandle str. on C 2 \ { 0 } Define a binary operation ∗ on C 2 \ { 0 } by ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ − x 2 ⎝ x 1 ⎝ x 2 ⎝ 1 − x 2 y 2 ⎝ x 1 ⎠ := ⎠ ∗ 2 ⎠ ⎠ y 2 y 1 y 2 y 1 1 + x 2 y 2 2 This satisfies the quandle axioms: 1. x ∗ x = x for x ∈ C 2 \ { 0 } 2. The inverse of ∗ y : C 2 \ { 0 } → C 2 \ { 0 } is given by ⎛ ⎞ x 2 ⎝ 1 + x 2 y 2 ∗ − 1 y : 2 ⎠ − y 2 1 − x 2 y 2 2 3. ( x ∗ y ) ∗ z = ( x ∗ z ) ∗ ( y ∗ z ) 4

  5. P : the set of parabolic elements of PSL(2 , C ) ( ∼ = the set of parabolic elements of SL(2 , C ) with trace 2) P has a quandle str. by x ∗ y = y − 1 xy . Define a map C 2 \ { 0 } 2:1 − − → P by ⎛ ⎞ ⎛ ⎞ − x 2 ⎝ x ⎝ 1 − xy ⎠ �→ ⎠ y 2 y 1 + xy This map induces a quandle isomorphism P ∼ = ( C 2 \ { 0 } ) / ± 5

  6. Arc coloring by ( C 2 \ { 0 } ) / ± Let D be a diagram of a knot. A map A : { arcs of D } → ( C 2 \ { 0 } ) / ± is called an arc coloring if it satisfies the following relation at each crossing. x ∗ y x, y and x ∗ y ∈ ( C 2 \ { 0 } ) / ± y x 6

  7. Arc coloring of the figure eight knot � � � � 1 0 0 t � � 1 − t 2 This is the figure eight knot. � � − t t (1 + t 2 ) 8

  8. Arc coloring of the figure eight knot � � � � 1 0 0 t � � 1 − t 2 Color two arcs. � � − t t (1 + t 2 ) 9

  9. Arc coloring of the figure eight knot � � � � 1 0 0 t � � 1 Consider the relation at a − t 2 crossing. � � − t t (1 + t 2 ) 10

  10. Arc coloring of the figure eight knot � � � � 1 0 0 t � � 1 ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ − t 2 ⎝ 1 ⎝ 0 ⎝ 1 ⎠ ∗ − 1 ⎠ = ⎠ − t 2 0 t � � − t t (1 + t 2 ) 11

  11. Arc coloring of the figure eight knot � � � � 1 0 0 t � � 1 Consider the relation at an- − t 2 other crossing. � � − t t (1 + t 2 ) 12

  12. Arc coloring of the figure eight knot � � � � 1 0 0 t � � 1 ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ − t 2 ⎝ 0 ⎝ 1 − t ⎠ = ⎠ ∗ ⎝ ⎠ − t 2 t (1 + t 2 ) t � � − t t (1 + t 2 ) 13

  13. Arc coloring of the figure eight knot The relation at this crossing � � � � 1 0 is 0 t ⎛ ⎛ ⎞ ⎛ ⎞ ⎞ − t ⎝ 0 ⎠ ∗ ⎠ = ⎝ ⎝ ⎠ t (1 + t 2 ) t � � ⎛ ⎞ ⎛ ⎞ 1 − t 3 ⎝ 1 − t 2 ⎠ = ⎝ ⎠ t (1 + t 2 + t 4 ) 0 ⎧ ( t + 1)( t 2 − t + 1) = 0 ⎨ t ( t 2 + t + 1)( t 2 − t + 1) = 0 ⎩ � � ∴ t 2 − t + 1 = 0 − t t (1 + t 2 ) 14

  14. Arc coloring of the figure eight knot The relation at this crossing � � � � 1 0 is 0 t ⎛ ⎛ ⎞ ⎛ ⎞ ⎞ ⎝ 1 ⎝ 1 ⎠ ∗ ⎠ = ⎝ ⎠ − t 2 0 � � ⎛ ⎞ ⎛ ⎞ 1 ⎝ 1 + t 2 − t − t 2 ⎠ = ⎝ ⎠ t (1 + t 2 ) − t 2 ⎧ t 2 + t + 1 = 0 ⎨ t ( t 2 + t + 1) = 0 ⎩ � � ∴ t 2 + t + 1 = 0 − t t (1 + t 2 ) 15

  15. Arc coloring of the figure eight knot There are two relations t 2 + t + 1 = 0 , t 2 − t + 1 = 0 which do not have any common solution. But we have a √ √ coloring by ( C 2 \ { 0 } ) / ± ∼ = P ( t = ± 1+ 3 i or ± 1 − 3 i ). 2 2 Because the trace of the longitude is − 2, the coloring by P does not lift to a coloring by C 2 \ { 0 } . But we can color the long knot by C 2 \ { 0 } . 16

  16. Arc coloring of the figure eight knot � � � � 1 0 0 t A parabolic representation � � 1 can be obtained by the map − t 2 ⎛ ⎞ ⎛ ⎞ x 2 ⎝ 1 − xy ⎝ x ⎠ �→ ⎠ − y 2 y 1 + xy � � − t t (1 + t 2 ) 17

  17. Arc coloring of the figure eight knot � � � � 1 1 1 0 0 1 − t 2 1 A parabolic representation � � 1 + t 2 1 can be obtained by − t 4 1 − t 2 ⎛ ⎞ ⎛ ⎞ x 2 ⎝ 1 − xy ⎝ x ⎠ �→ ⎠ − y 2 y 1 + xy � � 1 + t 2 + t 4 t 2 1 − t 2 − t 4 − t 2 (1 + t 2 ) 2 18

  18. Arc coloring of the figure eight knot � � � � 1 1 1 0 √ 0 1 − 1 − 3 i 1 2 ⎛ ⎞ √ 1+ 3 i 1 √ ⎝ ⎠ 2 √ √ When t 2 = − 1+ 3 i − 1 − 3 i 3 − 3 i : 2 2 2 ⎛ ⎞ √ − 1+ 3 i 0 ⎝ ⎠ 2 √ 1+ 3 i 2 2 19

  19. Region coloring Let D be a diagram and A be an arc coloring by ( C 2 \ { 0 } ) / ± . A map D : { regions of D } → ( C 2 \ { 0 } ) / ± is called an region coloring if it satisfies the following relation at each arc of D . x ∗ y x, y and x ∗ y ∈ ( C 2 \ { 0 } ) / ± y x A pair S = ( A , R ) ( A : arc coloring, R : region coloring) is called a shadow coloring . 20

  20. Region coloring of the figure eight knot � � � � 1 0 √ � � 0 � � − 1+ 3 i 2 2 √ 2 � � 2 − 3 i 1 1 � � √ � � 1 2 − 3 i Put a region color at a region 1 ⎛ ⎞ √ 1 1 − 3 i ⎝ 1 √ � � e.g. ⎠ . 2 2 − 3 i 1 √ − 1 − 3 i 2 ⎛ ⎞ √ 3 − 3 3 i ⎝ ⎠ 2 √ − 1 − 3 i 2 ⎛ ⎞ √ − 1 − 3 i ⎝ ⎠ 2 √ − 1+ 3 2 21

  21. Region coloring of the figure eight knot � � � � 1 0 The color of an adjacent re- √ � � 0 � � − 1+ 3 i 2 2 √ 2 � � gion is determined by the re- 2 − 3 i 1 1 � � √ � � 1 2 − 3 i lation. 1 √ 1 1 − 3 i √ ⎛ ⎞ ⎛ ⎞ � � 0 2 ⎝ 1 2 − 3 i ⎠ ∗ − 1 √ √ ⎝ ⎠ − 1 − 3 i − 1+ 3 i 1 2 2 ⎛ ⎞ ⎛ ⎞ √ 1 3 − 3 3 i √ = ⎝ ⎠ ⎝ ⎠ 2 √ 2 − 3 i − 1 − 3 i 2 ⎛ ⎞ √ − 1 − 3 i ⎝ ⎠ 2 √ − 1+ 3 2 22

  22. Region coloring of the figure eight knot � � � � 1 0 √ The color of an adjacent re- � � 0 � � − 1+ 3 i 2 2 √ 2 � � gion is determined by the re- 2 − 3 i 1 1 � � √ � � 1 2 − 3 i lation. 1 √ 1 1 − 3 i √ ⎛ ⎞ ⎛ ⎞ � � 2 ⎝ 1 ⎝ 1 2 − 3 i ⎠ ∗ − 1 √ ⎠ − 1 − 3 i 1 0 2 ⎛ ⎞ ⎛ ⎞ √ ⎝ 2 3 − 3 3 i = ⎠ ⎝ ⎠ 2 √ 1 − 1 − 3 i 2 ⎛ ⎞ √ − 1 − 3 i ⎝ ⎠ 2 √ − 1+ 3 2 23

  23. Region coloring of the figure eight knot � � � � 1 0 √ � � 0 � � − 1+ 3 i 2 2 √ 2 � � 2 − 3 i 1 1 � � √ � � The color of an adjacent re- 1 2 − 3 i 1 √ 1 1 − 3 i √ � � gion is determined by the re- 2 2 − 3 i √ − 1 − 3 i lation. 2 ⎛ ⎞ √ 3 − 3 3 i ⎝ ⎠ 2 √ − 1 − 3 i 2 ⎛ ⎞ √ − 1 − 3 i ⎝ ⎠ 2 √ − 1+ 3 2 24

  24. ⎛ ⎞ ⎝ 1 Fix an element p 0 of C 2 \ { 0 } e.g. p 0 = ⎠ . 2 x y At a corner colored by r ( x ↔ under arc, y ↔ over arc), we let z =det( p 0 , y ) det( r, x ) det( r, y ) det( p 0 , x ) p π i =Log(det( p 0 , y )) + Log(det( r, x )) − Log(det( r, y )) − Log(det( p 0 , x )) − Log( z ) q π i =Log(det( p 0 , x )) + Log(det( r, y )) 1 − Log(det( p 0 , r )) − Log(det( x, y )) − Log( 1 − z ) where Log( z ) = log | z | + i arg( z ) ( − π < arg( z ) ≤ π ) 25

  25. We remark that p, q ∈ Z . Then define the sign in the following rule: x y y x x y y x r r r r x y y x x y y x and r r r r +[ z ; p, q ] − [ z ; p, q ] (in-out or out-in) (in-in or out-out) 26

  26. Let � � �� − π 2 R ( z ; p, q ) = R ( z ) + π i 1 q Log( z ) − p Log 6 . 2 1 − z where R ( z ) is given by � z Log(1 − t ) dt + 1 R ( z ) = − 2Log( z )Log(1 − z ) 0 t Theorem 1 � ε c R ( z c ; p c , q c ) = i (Vol( S 3 \ K, ρ ) + i CS( S 3 \ K, ρ )) c :corners where ρ is the parabolic representation determined by the arc coloring. 27

  27. Background materials X : a quandle G X = ⟨ x ∈ X | y − 1 xy = x ∗ y ⟩ : the associated group X has a right G X -action defined by x ∗ ( x ε 1 1 x ε 2 1 . . . x ε n n ) = ( . . . (( x ∗ ε 1 x 1 ) ∗ ε 2 x 2 ) . . . ) ∗ x ε n n So Z [ X ] is a right Z [ G X ]-module. 28

  28. Quandle homology Let C R n ( X ) = span Z [ G X ] { ( x 1 , . . . , x n ) | x i ∈ X } . Define the bound- ary operator ∂ : C R n ( X ) → C R n − 1 ( X ) by n � ( − 1) i { ( x 1 , . . . , � ∂ ( x 1 , . . . x n ) = x i , . . . , x n ) i =1 − x i ( x 1 ∗ x i , . . . , x i − 1 ∗ x i , x i +1 , . . . , x n ) } Let M be a right Z [ G X ]-module. The homology of M ⊗ Z [ G X ] C R n ( X ) is the rack homology H R n ( X ; M ). Considering non-degenerate chains, we also define the quandle homology H Q n ( X ; M ). 29

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend