introduction
play

Introduction Q uantum C hromo D ynamics is a Yang-Mills theory with - PowerPoint PPT Presentation

PADES and LARGE- N c QCD SANTI PERIS (IFAE - UA Barcelona) Luminy, Sep. 2009 LARGE- Nc QCD p.1/19 PADES and Introduction Q uantum C hromo D ynamics is a Yang-Mills theory with fermions, based on local SU ( N c ) : 1 F A 4 g


  1. PADES and LARGE- N c QCD SANTI PERIS (IFAE - UA Barcelona) Luminy, Sep. 2009 LARGE- Nc QCD – p.1/19 PADES and

  2. Introduction ⋆ Q uantum C hromo D ynamics is a Yang-Mills theory with fermions, based on local SU ( N c ) : 1 µν F Aµν 4 g 2 F A L = i ψ a � D ab ψ b − • ψ b : Dirac field, b = 1 , ..., N c • F A µν : Yang-Mills field strength tensor, A = 1 , ..., N 2 c − 1 • g : coupling constant • N c = 3 ⋆ 1 of 7 Millennium Problems worth $ 1M Prize from the Clay Math Inst. ( g 2 N c → constant) ⋆ Although Nature has N c = 3 , the limit N c → ∞ is very interesting. (’t Hooft ’74; Witten ’79) • In this limit, all functions are meromorphic. LARGE- Nc QCD – p.2/19 PADES and

  3. Resonance Saturation < π ( p ′ ) | V µ | π ( p ) > = F ( − q 2 ) ( p ′ + p ) µ q 2 = ( p ′ − p ) 2 , M 2 F ( − q 2 ) V ′ 60 s ) ≃ ( V MD − q 2 + M 2 V 1 + q 2 ∞ C 2 � R ≈ (meromorphic , N c → ∞ ) − q 2 + M 2 R R 1 + ♯ α s ( µ ) log − q 2 α s ( µ ) � � ( q 2 → − ∞ ) − 16 πF 2 ≈ µ 2 + ... + ... π q 2 1 1 ≡ 2 L 9 1 + a q 2 + ... ( q 2 → 0) ≈ ⇒ a = ≃ M 2 (0 . 74 GeV) 2 F 2 π V 0.9 Spacelike ( Q 2 = − q 2 ) 0.8 π P. Zweber Q 2 |F π (Q 2 )| (GeV 2 ) 0.7 Sakurai ’69 Ecker et al. ’89 0.6 VDM Donoghue et al. ’89 0.5 Moussallam ’97 0.4 - - - - - - - - - - - - - 0.3 Knecht, de Rafael ’98 0.2 Perrottet, de Rafael, S.P . ’98 PQCD(asy) 0.1 0 0 2 4 6 8 10 12 14 Q 2 (GeV 2 ) LARGE- Nc QCD – p.3/19 PADES and

  4. ∞ C 2 F ( − q 2 ) 1 + q 2 � R = − q 2 + M 2 R R ( ⋆ ) M 2 V ≈ − q 2 + M 2 V • What is this approximation ( ⋆ ) ? (1,2,.... ∞ ) • Does it work for all functions ? • Where in the complex Q 2 plane does ( ⋆ ) converge ? • How are the poles/residues of the approx. ( ⋆ ) related to the physical counterparts? LARGE- Nc QCD – p.4/19 PADES and

  5. High Energy: Weinberg SRs ⋆ < V V − AA > with “Regge” spectrum (large n ) • M 2 A n ∼ M 2 V n ∼ n , for poles n ≫ 1 . • F A n ∼ F V n ∼ const . , for residues n ≫ 1 . N + c N F 2 F 2 � � F 2 − q 2 A n V n q 2 Π( − q 2 ) = � + q 2 � lim − q 2 + M 2 − q 2 + M 2 N →∞ A n V n n n ⋆ Π( − q 2 ) independent of c . ⋆ Analyticity: 2 Im(q ) 2 Re(q ) 2 poles of G(q ) LARGE- Nc QCD – p.5/19 PADES and

  6. High Energy: WSRs (and II) 1 Imposing that q 2 Π( − q 2 ) | q 2 →− ∞ ∼ ( q 2 ) 2 for N finite: N + c N � � ?? − F 2 − � F 2 � F 2 lim A n + = 0 V n N →∞ n n � N N + c � ?? � F 2 A n M 2 � F 2 V n M 2 lim A n − = 0 V n N →∞ n n dependent on c !! (Golterman, S.P . ’03) ⋆ Physical poles and residues do not obey WSRs. LARGE- Nc QCD – p.6/19 PADES and

  7. What is resonance saturation ? • It’s a Pade Approximant to a meromorphic function M 2 ◮ F ( − q 2 ) ≈ V is the PA P 0 1 ( − q 2 ) to F ( − q 2 ) . V − q 2 + M 2 • N A,V resonances in N A N V F 2 F 2 q 2 Π( − q 2 ) = F 2 − q 2 � A + q 2 � V − q 2 + M 2 − q 2 + M 2 A V A V ⇒ P N N ( − q 2 ) with N = N A + N V = ⊕ 1 / ( q 2 ) 2 fall-off = ⇒ P N − 2 ( − q 2 ) N ◮ WSRs are obeyed by PA’s parameters. Parameters (residues + poles) Residues and poles � = of Pade Approx . of physical functions LARGE- Nc QCD – p.7/19 PADES and

  8. Pade Approximants (Physics ⇔ z ≡ − q 2 ) G ( z ) | z → 0 ≈ G 0 + G 1 z + G 2 z 2 + G 3 z 3 + ... . Let Define rational function P M N ( z ) such that N ( z ) ≡ Q M ( z ) R N ( z ) ≈ G 0 + G 1 z + G 2 z 2 + ... + G M + N z M + N + O ( z M + N +1 ) P M If G ( z ) ∼ 1 /z K , choose P M M + K ( z ) . (Pommerenke ’73) Convergence Theorem Let G ( z ) be meromorphic and analytic at the origin. Then, M →∞ P M lim M + K ( z ) = G ( z ) for z ∈ compact set in C , except on isolated points. LARGE- Nc QCD – p.8/19 PADES and

  9. Convergence Map 2 Im(q ) 2 Re(q ) 2 poles of G(q ) LARGE- Nc QCD – p.9/19 PADES and

  10. Convergence Map 2 Im(q ) z 2 Re(q ) 2 poles of G(q ) z* LARGE- Nc QCD – p.9/19 PADES and

  11. Convergence Map 2 Im(q ) z 2 Re(q ) 2 poles of G(q ) z* LARGE- Nc QCD – p.9/19 PADES and

  12. Convergence Map 2 Im(q ) z 2 Re(q ) 2 poles of G(q ) z* _ = pole U zero = ``defect´´ N.B. This is why sometimes residues turn out to be “unexpectedly” small. (Friot, Greynat, de Rafael ’04) LARGE- Nc QCD – p.9/19 PADES and

  13. Convergence Map 2 Im(q ) 2 M P N ~ ~ G(q ) z 2 Re(q ) 2 poles of G(q ) z* Pommerenke ‘73 _ = pole U zero = ``defect´´ LARGE- Nc QCD – p.9/19 PADES and

  14. Toy Model for VV-AA • Not Stieltjes. • Meromorphic. • Spectrum (Regge-like): M 2 V,A ( n ) = m 2 V,A + n Λ 2 QCD Shifman et al. ’98 Golterman, S.P ., ’01 F 2 � � ∞ F 2 F 2 q 2 Π( − q 2 ) = F 2 + q 2 ρ � + q 2 V ( n ) − − q 2 + M 2 − q 2 + M 2 − q 2 + M 2 A ( n ) ρ n =0 where � ’s can be written in terms of ψ ( z ) = Γ ′ ( z ) / Γ( z ) . Can choose realistic numbers so that C 0 − C 2 q 2 + C 4 ( q 2 ) 2 + ... − q 2 Π( − q 2 ) | q 2 → 0 ≈ ( finite radius conv . ) 0 + 0 q 2 + C − 4 ( q 2 ) 2 − C − 6 − q 2 Π( − q 2 ) | q 2 →− ∞ ≈ ( q 2 ) 3 + ... ( no logs , asymptotic) with C ′ s which are calculable ! LARGE- Nc QCD – p.10/19 PADES and

  15. PAs to VV-AA model: Poles and Residues PAs work beautifully. • ∃ Convergence in complex Q 2 plane, away from singularities. • Prediction of physical residues and poles good near the origin but deteriorates very quickly as you move away, eventually becoming complex. Last pole always off. • PAs approximate original function at the expense of altering residues and poles hierarchically (more the farther away from the origin). • Prediction of a global quantity such as � 0 dq 2 q 2 Π( − q 2 ) ∼ ( m π + − m π 0 ) EM −∞ very good. It can even be used as input. LARGE- Nc QCD – p.11/19 PADES and

  16. PAs: predicting the next coeff’s Only with C 0 , C 2 , C 4 : − r 2 r 2 = 3 . 379 × 10 − 3 , P 0 2 = R ) , z R = 0 . 6550 + i 0 . 1732 . ( − q 2 + z R )( − q 2 + z ∗ (natural units: GeV=1) • Poles are complex , i.e. not physical. • One can predict next terms in Taylor expansion at q 2 = 0 and at −∞ . Let’s call X i ≡ C i ( predicted ) . C i ( real ) With P 0 ⇒ X − 4 = 1 . 3 , X 6 = 0 . 97 (not bad !). 2 = • Gone up to P 50 52 (with 103 parameters ): X − 4 , − 6 , − 8 = 1 + O (10 − 52 , − 48 , − 45 ) X 206 = 1 + O (10 − 192 ) , !! Could one always assure this for a Pade ? LARGE- Nc QCD – p.12/19 PADES and

  17. PAs: poles and zeros E.g. Analytic structure of P 50 52 : 2 Im (q ) 15 10 5 (Masjuan, S.P ., ’07) 5 15 10 20 25 2 Re (q ) -5 -1 0 -15 LARGE- Nc QCD – p.13/19 PADES and

  18. Other kind of PAs: Pade-Type Approx. Denominator is fixed with poles at physical masses. Simplest one (3 inputs, C 0 = − F 2 0 , M 2 ρ , M 2 A ) : − F 2 0 M 2 ρ M 2 A T 0 2 ( − q 2 + M 2 ρ )( − q 2 + M 2 A ) • Low- q 2 expansion and integrals over negative q 2 not bad. • Low-order PTAs tend to be worse than PAs, in particular the high- q 2 expansion. Gone up to T 7 9 . • Since poles are predetermined, residues pay full price: ⇒ Residues deteriorate hierarchically (worse the farther from origin). ⇒ Last residue considered, completely off. LARGE- Nc QCD – p.14/19 PADES and

  19. Other kind of PAs: Partial-Pade Approx. • Denominator with some poles fixed and some free. • Interesting example: − r 2 R = 3 . 75 × 10 − 3 , P 0 R r 2 1 , 1 = ρ )( − q 2 + z R ) , with z R = 0 . 8665 . ( − q 2 + M 2 ⇒ M A | Pade = √ z R = 0 . 930 = while M A | exact = 1 . 18 (exactly the same as what is often found in the literature, e.g. Ecker et al. ’89; Friot, Greynat and de Rafael ’04) • In general, PPAs are an intermediate situation between PAs and PTAs. LARGE- Nc QCD – p.15/19 PADES and

  20. Insert: PT prediction in QCD( N c → ∞ ) Assume physical masses from PDG. 0 + 4 L 10 q 2 − 8 C 87 ( q 2 ) 2 + ... q 2 Π ≈ f 2 T n inputs m T 1 f 0 , L 10 ; m ρ , m a , m ρ ′ 3 T 2 ( a ) f 0 , L 10 , δM π ; m ρ , m a , m ρ ′ , m a ′ 4 T 2 ( b ) f 0 , L 10 , F ρ ; m ρ , m a , m ρ ′ , m a ′ 4 T 3 ( a ) f 0 , L 10 , F ρ , δM π ; m ρ , m a , m ρ ′ , m a ′ , m ρ ′′ 5 T 3 ( b ) f 0 , L 10 , F ρ , F a ; m ρ , m a , m ρ ′ , m a ′ , m ρ ′′ 5 T 4 f 0 , L 10 , F ρ , F a , δM π ; m ρ , m a , m ρ ′ , m a ′ , m ρ ′′ , m ρ ′′′ 6 A � Amoros et al. ’00 T 42 a T 42 b T 53 a T 53 b P 20 T 31 T 64 B � Knecht et al. ’01 10 C � Mateu et al. ’07 8 ) A • | Masjuan, S.P ., ’08 C 87 10 3 GeV 2 - − 5 . 7(5) · 10 − 3 GeV − 2 6 (+1 /N c corr ′ s) ← C - B 4 ( (G’lez-Alonso et al. ’08) 2 τ decay ⇒ 4 . 9(2) · 10 − 3 GeV − 2 T 42 a T 42 b T 53 a T 53 b P 20 T 31 T 64 LARGE- Nc QCD – p.16/19 PADES and

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend