integr grate ted c computa tatio tional ma l materia ials
play

Integr grate ted C Computa tatio tional Ma l Materia ials ls - PowerPoint PPT Presentation

Integr grate ted C Computa tatio tional Ma l Materia ials ls Science & Sc & Engineering ( (IC ICMSE SE ) ) Appr pproache hes t to Problems wi with h Evolving D Domai mains Somnat nath G h Ghosh Depar De artments


  1. Integr grate ted C Computa tatio tional Ma l Materia ials ls Science & Sc & Engineering ( (IC ICMSE SE ) ) Appr pproache hes t to Problems wi with h Evolving D Domai mains Somnat nath G h Ghosh Depar De artments of C Civ ivil il & Me Mechanic ical l Engin gineerin ing Johns H Hopkins U Univers rsity Baltimore, Maryland USA Worksho shop o on C Compu puta tati tional M Methods ds for P r Prob roblems w with Evolv lvin ing Do Domain ins an and Dis Discontin inuit itie ies AHPCRC, S AHP , Stanfor ord U Univers rsity, C y, CA Decem ecember er 4 4-5, 5, 2013 2013

  2. Integ egrated ated M Materi terials als S Scien ence & e & Engine neering ( (ICMSE) SE) P Paradi digm ICMSE SE philoso sophy phy “ entails i integra ration on o of i inform ormation on a acros oss le lengt gth an and t tim ime s scale ales for all all rele levan ant m mat ateria ials ls p phenomena an a and enable ables concurrent an analy alysis o of man anuf ufac acturin ing, d design ign, an and mat aterial ials w wit ithin in a a holis listic ic s system ” ” J. Allison, D. Backman, and L. Christodoulou, "Integrated Computational Materials Engineering: A new paradigm for the global materials profession," JOM, pp. 25-27, 2006.

  3. Two C Cas ase S Studies i in t the I e ICMSE E Parad radig igm 1. 1. Multi ti-scale le m model f l for ductile ile failu ilure in hete terogeneous m meta tallic mate terials 2. Im . Image-ba based m modelin ling of fatig igue ue f failu ilure in m metall llic ic allo loys

  4. Ductile F e Failure o ure of H Hetero erogen eneous us Metall allic ic M Mater erial ials • Ductile failure in heterogeneous materials typically initiates with particle cracking or interfacial debonding. • Voids grow near nucleated regions with deformation, and subsequently coalesce with neighboring voids to result in localized matrix failure. Automotive Engine Block Evolving Ductile Failure in Aluminum Microstructure • Evolution of matrix failure causes stress and strain redistribution in the microstructure that leads to ductile fracture at other sites. • Eventually, the phenomena leads to catastrophic failure of the microstructure. Microstructure: Cast Aluminum Alloy with Si Particulates and Intermetallics Stress-Strain plot showing ductility

  5. Fatigue i Fat in Aerosp space E Engine Mat aterials s Dwell fatigue 9 times during hold (2 min) 9 times during hold (2 min) Stress Stress 20 times 20 times during cycle during cycle 1 sec 1 sec 1 sec 1 sec time time 50 times during one cycle 50 times during one cycle Stress Stress time time Regular fatigue Effect of microstructure important in predicting fatigue life: e.g. nucleation at location of extreme values of grain morphology, • Crack initiation site is sub-surface orientation and misorientation, micro-texturing . • Initiation location depends on local microstructure • Initiation area is faceted with limited evidence of plasticity • Away from initiation site, crack growth is ‘normal’, i.e. striations • 2 min. dwell can lead to 2-10 x reduction in fatigue life

  6. Structur cture-Materi erial Inte teracti tion Chal hallenges • Mo Modelin ling at at the macros roscopic s scales cannot ot prov rovide a accura rate estim imates o of d duc uctilit ility an and fat atigu igue lif life • Lac acks ap appropriat iate lo local ge al geometric ic an and thermo-mechan anical al in information o of the in incip ipie ient d dam amage age s sit ites • Mo Modelin ling at at the micros ostru ructura ral s scales is comput utat atio ional ally ly i intractabl ble • Need a approp ropri riate mult ulti-scale le t techniq ique ues in in spat atia ial an l and temporal l domai ains that at w will ill up uphold ld t the e effic icie iency o of sim imula ulations, w while ile not compro romising t the require red r resol olution ons

  7. Case ase St Study dy 1 Adapt daptive Multi Spat Spatial-Sca cale le Mo Modelin ling o g of Ductile Fr Frac acture i in Heterogeneous M Metal allic Ma Materia ials ls S. Ghosh, “Micromechanical Analysis and Multi-Scale Modeling Using the Voronoi Cell Finite • Element Method”, CRC Press/Taylor & Francis, 2011, 729 pages. S. Ghosh and D. Paquet, “Adaptive Multi-Level Model for Multi-Scale Analysis of Ductile Fracture • in Heterogeneous Aluminum Alloys”, Mechanics of Materials, (in press), 2013. S. Ghosh, J. Bai and D. Paquet, Jour. Mech. Physics Solids , Vol. 57, 2009. • C. Hu, J. Bai and S. Ghosh, Modeling and Simulation in Materials Science and Engineering , Vol. 15, • pp. S377-S392, 2007

  8. Two-Wa Way C y Couple led Adap Adaptive Conc oncurrent t Multi ti-Scal Scale Mode del Physics-Based Reduced Homogenization Theory- Ordered Models Based Swing Region for Error Level-0 Analysis Level-1 RVE Homogenization T O Micromechanical Analysis in P Level-2 B Critical Regions O D T O T Localization W O N M U P Discretization Error Modeling Error Increase DOF e.g. by h-p-adaptation Introduce multiple-level hierarchy

  9. Fra ramew ework rk f for C or Conc oncurren ent M Multi-Sc Scal aling 1. 1. Mult Multi-Sc Scal ale C Characterizat atio ion: : Morpholo logy gy-bas based D Domai ain P Partitio ionin ing g an and RV RVE Id Identifi fication High Resolu olutio ion Dom omain Recon construct uctio ion Step 1. Wavelet interpolation A of low res. images 48 µm Step 2. Correlation-based enhancement from limited high res. images = + ' ' ' g g g ( ', ') ( ', ') ( ', ') I x y I x y I x y hrsm wvlt diff Recur cursiv ive R Refin inement based d on on Mor orph phol olog ogica cal l 2304 µm Cha haract cteristic c Fun unct ctions

  10. Frame mework for C Concur urrent M Mult ulti-Scal cale s 2. 2. Micromechan anic ical al Analy alysis is: Voron onoi oi Cell ll FEM f M for Duc Ductile ile Fractur ure VCFEM Optical micrograph S. Ghosh, “Micromechanical Analysis and Multi-Scale Modeling Using the Voronoi Cell Finite Element Method”, CRC Press/Taylor & Francis, 2011, 729 pages.

  11. Vor oron onoi C Cell FE FEM M For Formulation for or ix Crac acking Partic icle le a and Matrix VCFEM for VCFEM for VCFEM for VCFEM for VCFEM for VCFEM for Matrix Cracking Matrix Cracking undamaged particle undamaged particle damaged particle damaged particle Stress function: Φ = Φ + Φ Φ = Φ +Φ m m m c / c c c cr / +Φ / m cr poly rec poly rec rec ( ) ( ) ∏ ∫ ∫ ∆ ∆ = − ∆ ∆ Ω − ∆ Ω σ u B σ σ ε σ , , : d d Assumed Stress-Hybrid FEM Ω Ω + + m c m c e ( ) ( ) ∫ ∫ + + ∆ ⋅ ⋅∆ ∂Ω − + ∆ ⋅∆ Γ e σ σ n u t t u d d ∂Ω Γ e tm ( ) ∫ − + ∆ − − ∆ ⋅ ⋅∆ ∂Ω m m c c c σ σ σ σ n u ' d ∂Ω c ( ) ∫ ′′ − + ∆ ⋅ ⋅∆ ∂Ω σ σ c c cr n u d ∂Ω For local softening in stress-strain cr ( ) ∫ ∫ + ∆ ∆ Ω + ∆ Ω A σ ε σ ε s s s s response: Higher-order displacement , : d d Ω Ω s s interpolated regions is embedded in ( ) ∫ − + ∆ ⋅ ⋅∆ ∂Ω σ σ s s n u d the stress-interpolated VCFEM ∂Ω s domain C. Hu and S. Ghosh, IJNME , 2008.

  12. Microstruc uctur ural P Partic icle le a and Matrix ix Cra racking Matrix Cracking Nucleation: Particle Cracking Nucleation: Gurson-Tvergaard-Needleman Weibull distribution based (GTN) type Models crack initiation criterion 2     ( ) 3 q q p Φ = + − − + * *2    2  2 cosh 1 q f q f σ 1 σ 3    2  0 0 ( ) = + = ε ε + − ε p p p (1 ) df df df A d f d nucleation growth kk ≤  f for f f c  = * −  * f f f ( ) + − > u c f f f for f f  − c c c  f f F c Non on-lo loca cal void oid grow owth h rate  1   ( ) ( ) ( ) ∫   = − f x f x w x x dV ( ) local x W v

  13. Frame mework for C Concur urrent M Mult ulti-Scal cales 3. Macros 3. roscopic Mo Modelin ling: : Hom Homogenized C Con ontinuum M Mod odel f for or Plas lastic icit ity an and Dam Damage age E Evolu lution wit ith H Heteroge geneit itie ies Anisotropic yield surface in the GTN model   Σ 2 Σ 3 ( )   2  eq hyd φ = + − − = 2 cosh 1 0 Q f Q f ( ) ( ) 1 1   2 2 Y W Y W   f p f p ( )( ) ( ) ( ( )( ) ( ) 2 ) 2 2 Σ 2 = Σ − Σ + Σ − Σ + Σ − Σ + Σ 2 F W G W H W C W eq p yy zz p zz xx p xx yy p xy F, G, H and C : Anisotropic YS parameters calibrated from homogenization of micromechanics in principal material-damage coordinates ( ) ( )  Q = − +   p  = Σ = Σ + Σ + Σ 1 f f e A e e 1 ; Q kk − 1 hyd xx yy zz (1 ) f  inclusion 1   ( ) ( ) ( ) ∫   = − x x x x f f w dV ( ) local W x v

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend