inflation and thermal right handed sneutrino dark matter
play

Inflation and Thermal Right-Handed Sneutrino Dark Matter Apostolos - PowerPoint PPT Presentation

Inflation and Thermal Right-Handed Sneutrino Dark Matter Apostolos Pilaftsis School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom GGI, Florence, 2529 June 2012 Plan of the Talk F D -Term Hybrid


  1. Inflation and Thermal Right-Handed Sneutrino Dark Matter Apostolos Pilaftsis School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom GGI, Florence, 25–29 June 2012

  2. Plan of the Talk • F D -Term Hybrid Inflation • Natural Solution to the Gravitino Overabundance Problem • Right-Handed Sneutrino as Thermal Dark Matter • Further Cosmological and Particle-Physics Implications • Conclusions and Future Directions ∗ Talk based on B. Garbrecht and A.P., PL B636 (2006) 154; B. Garbrecht, C. Pallis and A. P., JHEP 0612 (2006) 038; F. Deppisch and A. P., JHEP 10 (2008) 080 GGI, 25–29 June 2012 Inflation & Thermal Right-Handed Sneutrino Dark Matter A. Pilaftsis

  3. • Standard Big-Bang Cosmology and WMAP Density perturbations as observed by WMAP δT ∼ δρ ∼ 10 − 5 T ρ GGI, 25–29 June 2012 Inflation & Thermal Right-Handed Sneutrino Dark Matter A. Pilaftsis

  4. – Inflation Dynamics Number of e -folds: � t end � φ N 1 dφ V N e = dt H ( t ) ≈ ≈ 50 – 60 m 2 V φ t N φ end Pl Power spectrum of curvature perturbations: V 3 / 2 1 P 1 / 2 ≈ 4 . 86 × 10 − 5 ( k 0 = 0 . 002 Mpc − 1 ) √ = R 3 πm 3 | V φ | 2 Pl Spectral index: n s − 1 = d ln P 1 / 2 R = 2 η − 6 ε ≈ − 0 . 037 +0 . 015 (WMAP 5 years data) − 0 . 014 d ln k Slow-roll parameters: � V φ � 2 ε = 1 V φφ 2 m 2 η = m 2 ≪ 1 , ≪ 1 Pl Pl V V GGI, 25–29 June 2012 Inflation & Thermal Right-Handed Sneutrino Dark Matter A. Pilaftsis

  5. • F D -Term Hybrid Inflation – Hybrid Inflation [A.D. Linde, PLB259 (1991) 38] φ c 30 4 20 V 10 3 0 2 -4 -4 φ -2 -2 1 0 0 χ 2 2 4 4 0 = λ 4( | χ | 2 − M 2 ) 2 + 1 2 g | χ | 2 | φ | 2 + 1 2 m 2 | φ | 2 V 4 M 4 + 1 V ≃ λ 2 m 2 | φ | 2 Inflation starts, when φ ≫ φ c ∼ M , χ = 0 → Inflation ends with the so-called waterfall mechanism GGI, 25–29 June 2012 Inflation & Thermal Right-Handed Sneutrino Dark Matter A. Pilaftsis

  6. – F -Term Hybrid Inflation [ E. Copeland, A. Liddle, D. Lyth, E. Stewart, D. Wands, PRD49 (1994) 6410; G. Dvali, Q. Shafi, R. Schaefer, PRL73 (1994) 1886 ] Superpotential: W = κ � S ( � X 1 � X 2 − M 2 ) Real Potential determined from F terms: | ∂W/∂S | 2 + | ∂W/∂X 1 | 2 + | ∂W/∂X 2 | 2 V = κ 2 | X 1 X 2 − M 2 | 2 + κ 2 | S | 2 ( | X 1 | 2 + | X 2 | 2 ) = Start of inflation: S in > M , X in = κ 2 M 4 . 1 , 2 = 0 , with V X 1 , 2 -Mass Matrix: � | κ | 2 | S | 2 � − κ 2 M 2 M 2 X 1 , 2 = − κ ∗ 2 M 2 | κ | 2 | S | 2 det M 2 End of inflation: S < M → X 1 , 2 < 0 → waterfall mechanism. GGI, 25–29 June 2012 Inflation & Thermal Right-Handed Sneutrino Dark Matter A. Pilaftsis

  7. – Slope of the Potential Potential is too flat! ∂V/∂S = 0 . Radiative lifting of the S -flat direction: � | S | 2 � V 1 − loop = κ 4 M 4 16 π 2 ln M 2 H H 2 | S | 2 + κ 2 M 4 | S | 4 SUGRA corrections: V SUGRA = − c 2 Pl + . . . 2 m 4 Number of e -folds: N e = 4 π 2 ( S in ) 2 ≈ 55 m 2 κ 2 Pl ∼ 10 − 2 − ∼ 10 − 1 m Pl → predictive scenario For 10 − 3 < → S in < ∼ κ < � � � 2 = 5 × 10 − 5 → M ∼ 10 16 GeV. Power spectrum: P 1 / 2 4 N e M = R 3 m Pl M close to the GUT or gauge-coupling unification scale M X . Spectral index: n s − 1 = − 1 N e ≈ − 0 . 02 (mSUGRA). GGI, 25–29 June 2012 Inflation & Thermal Right-Handed Sneutrino Dark Matter A. Pilaftsis

  8. – F D -Term Hybrid Inflation [B. Garbrecht and A.P., PL B636 (2006) 154] H d + ρ κ � S ( � X 1 � X 2 − M 2 ) + λ � S � H u � S � � N i � W = N i 2 N j + W ( µ =0) ij � L i � H u � + h ν MSSM + Subdominant FI D -term of U(1) X : − g X 2 m 2 FI D X Remarks: • Mass scales: m Pl , M , m FI and M SUSY . • � S � ∼ 1 κ M SUSY sets the Electroweak and the Singlet Majorana scale: µ = λ � S � , m N = ρ � S � • Lepton Number Violation mediated by right-handed neutrinos N i occurs at the EW scale µ ∼ m N . → BAU may be explained by thermal EW-scale resonant leptogenesis. GGI, 25–29 June 2012 Inflation & Thermal Right-Handed Sneutrino Dark Matter A. Pilaftsis

  9. [B. Garbrecht, C. Pallis, A.P., JHEP 0612 (2006) 038] 2.0 1-Loop (a) , mSUGRA , ρ = λ = 4 κ 16 GeV) 1.5 ρ = λ = κ a S = 1 TeV M (10 1.0 0.5 -5 -4 -3 -2 10 10 10 10 κ 1.020 1-Loop (b) , 1.015 mSUGRA , ρ = λ = 4 κ 1.010 ρ = λ = κ 1.005 a S = 1 TeV n s 1.000 0.995 0.990 0.985 0.980 -5 -4 -3 -2 10 10 10 10 κ GGI, 25–29 June 2012 Inflation & Thermal Right-Handed Sneutrino Dark Matter A. Pilaftsis

  10. Next-to-mSUGRA with − c 2 H H 2 S 2 [B. Garbrecht, C. Pallis, A.P., JHEP 0612 (2006) 038] 2.5 c H = 0.07 (a) , c H = 0.14 , 2.0 ρ = λ = 4 κ 16 GeV ) ρ = λ = κ a S = 1 TeV 1.5 M ( 10 1.0 0.5 -3 -2 10 10 κ 1.08 c H = 0.07 (b) , 1.06 c H = 0.14 , ρ = λ = 4 κ 1.04 ρ = λ = κ a S = 1 TeV 1.02 n s 1.00 n s − 1 ≈ − 1 N e − c 2 H 0.98 0.96 0.94 -3 -2 10 10 κ GGI, 25–29 June 2012 Inflation & Thermal Right-Handed Sneutrino Dark Matter A. Pilaftsis

  11. – Post-inflationary Dynamics 1 1 2 ( X 1 ± X 2 ) = � X ± � + X ± = 2 ( R ± + iI ± ) , √ √ √ m 2 v with � X + � = 2 M and � X − � = 2 = FI √ √ 2 2 M Sector Boson Fermion Mass D -parity „ ψ X + « √ Inflaton S , R + , I + ψ κ = 2 κM + ψ † S ( κ -sector) „ ψ X − « − U(1) X Gauge V µ [ I − ] , R − ψ g = gM − i λ † ( g -sector) m 4 g 2 32 π (4 λ 2 + 3 ρ 2 ) m κ , 1 Γ κ = Γ g = M 4 m g . FI 128 π GGI, 25–29 June 2012 Inflation & Thermal Right-Handed Sneutrino Dark Matter A. Pilaftsis

  12. – Reheat Temperature and Gravitino Constraint ∼ H ( T reh Inflaton decays reheat the Universe, when Γ κ > κ ) : � 90 � 1 / 4 � T reh = Γ κ m Pl κ π 2 g ∗ ∼ 10 9 GeV) implies Generic Gravitino constraint ( T reh < κ � � � � 2 � 10 16 GeV � T reh λ 2 + 3 ∼ 3 · 10 − 15 × κ 4 ρ 2 < κ 10 9 GeV M ∼ 10 − 5 < For κ ≈ λ ≈ ρ → κ, λ, ρ Minimal F D -Term Hybrid Inflation ruled out by n s − 1 < 0 , unless . . . there is an extra source of entropy release GGI, 25–29 June 2012 Inflation & Thermal Right-Handed Sneutrino Dark Matter A. Pilaftsis

  13. – Thermal History of the Universe ρ κ = κ 2 M 4 log ρ ρ g ρ κ = 2 . 1 · 10 − 2 × κg ρ κ ∼ a −3 κ Reheating: particles decay ρ g ∼ a −3 Preheating (instantaneous) g particles ∼ a −4 decay ∼ a −4 a coh. matter rad. Infla− osc. rad. tion GGI, 25–29 June 2012 Inflation & Thermal Right-Handed Sneutrino Dark Matter A. Pilaftsis

  14. [B. Garbrecht, C. Pallis, A.P., JHEP 0612 (2006) 038] 6 -12 10 Y G < 10 ~ -13 Y G < 10 ~ -14 Y G < 10 ~ -5 5 1x10 10 -15 T g (GeV) m FI / M Y G < 10 ~ 4 10 3 -6 10 10 -4 -3 -2 10 10 10 κ GGI, 25–29 June 2012 Inflation & Thermal Right-Handed Sneutrino Dark Matter A. Pilaftsis

  15. • Right-Handed Sneutrino as Thermal Dark Matter Related considerations: • D. Hooper, J. March-Russell and S. M. West, PLB605 (2005) 228. • C. Arina and N. Fornengo, JHEP0711 (2007) 029. • C. Arina, F. Bazzocchi, N. Fornengo, J. C. Romao and J. W. F. Valle, PRL101 (2008) 161802. . . . But all with significant Left-Handed Sneutrino component! GGI, 25–29 June 2012 Inflation & Thermal Right-Handed Sneutrino Dark Matter A. Pilaftsis

  16. – Right-Handed Sneutrinos in the F D -Term Hybrid Model ∆( B − L ) = 0 or 2 − → R -Parity Conservation. Right-handed sneutrino mass matrix: � � ρ 2 v 2 S + M 2 ρA ρ v S + ρλv u v d M 2 e N N = ρA ∗ ρ 2 v 2 S + M 2 e ρ v S + ρλv u v d e N → m 2 N LSP = ρ 2 v 2 S + M 2 − N − ( ρA ρ v S + ρλv u v d ) . e e New LSP interaction: [B. Garbrecht, C. Pallis and A. P., JHEP 0612 (2006) 038] = 1 2 λρ � N ∗ i � N ∗ L LSP i H u H d + H . c . int SUSY version of the Higgs-Portal scenario. [V. Silveira and A. Zee, PLB161 (1985) 136; J. McDonald, PRD50 (1994) 3637.] GGI, 25–29 June 2012 Inflation & Thermal Right-Handed Sneutrino Dark Matter A. Pilaftsis

  17. N LSP → � H u � H d → W + W − ( m e Process: � N LSP � N LSP > M W ) � 10 − 4 � � tan β M H � 2 Ω DM h 2 ∼ > − → λ , ρ ∼ 0 . 1 ρ 2 λ 2 g w M W N LSP → � H u � H d → b ¯ Process: � N LSP � ( M H d ≈ 2 m e b N LSP < 2 M W ) � � 2 M H Ω DM h 2 ∼ 10 − 4 × B − 1 ( H d → � N LSP � ∼ 10 − 2 λ , ρ > N LSP ) × − → 100 GeV Limits from Cosmological Inflation: 2 . 3 × 10 − 4 < λ ( M SUSY ) ρ ( M SUSY ) ( mSUGRA ) ∼ 5 . 8 × 10 − 4 < ( nmSUGRA ) ∼ GGI, 25–29 June 2012 Inflation & Thermal Right-Handed Sneutrino Dark Matter A. Pilaftsis

  18. [F. Deppisch, A.P., JHEP 10 (2008) 080] Numerical estimate assisted by CPsuperH2.0 [J. S. Lee, M. Carena, J. Ellis, A. P., C. E. M. Wagner, arXiv:0712.2360 [ hep-ph ] . ] GGI, 25–29 June 2012 Inflation & Thermal Right-Handed Sneutrino Dark Matter A. Pilaftsis

  19. [F. Deppisch, A.P., JHEP 10 (2008) 080] Dama � Na Dama � I 10 0 CoGeNT 10 � 1 Xenon100 ΛΡ 10 � 2 Xenon1T 10 � 3 � � 0 LSP mSUGRA N Χ 1 1 10 � 4 10 1 10 2 m N � 1 � GeV � m 0 = 70 GeV , m 1 / 2 = 243 GeV , A 0 = 300 GeV , tan β = 10 , µ = 303 GeV . GGI, 25–29 June 2012 Inflation & Thermal Right-Handed Sneutrino Dark Matter A. Pilaftsis

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend