infinite fold enhancement in communications capacity
play

Infinite-fold enhancement in communications capacity using pre-shared - PowerPoint PPT Presentation

Infinite-fold enhancement in communications capacity using pre-shared entanglement Saikat Guha July 21, 2020 College of Optical Sciences, Department of Electrical and Computer Engineering University of Arizona, Tucson AZ (USA) arXiv:2001.03934


  1. Infinite-fold enhancement in communications capacity using pre-shared entanglement Saikat Guha July 21, 2020 College of Optical Sciences, Department of Electrical and Computer Engineering University of Arizona, Tucson AZ (USA) arXiv:2001.03934 (2020)

  2. Outline • Background – Quantum limit of classical communications – Joint detection receivers for superadditive capacity • Entanglement assisted communications over the bosonic channel – Transmitter-receiver design – Infinite-fold capacity enhancement with pre-shared entanglement • Conclusions and ongoing work

  3. Outline • Background – Quantum limit of classical communications – Joint detection receivers for superadditive capacity • Entanglement assisted communications over the bosonic channel – Transmitter-receiver design – Infinite-fold capacity enhancement with pre-shared entanglement • Conclusions and ongoing work

  4. Quantum limit of classical communications Shannon’s “channel” p Y | X ( y | x ) Physical (quantum) Optical (quantum) Optical (quantum) channel X Y Alice Bob receiver modulation (e.g., loss, noise) Shannon, 1948 Shannon capacity, C Shannon = max p X I ( X ; Y ) Holevo, 1996 Schumacher, Westmoreland, 1997 Physical (quantum) ρ B n ( x ) ρ A n ( x ) A Y n B Bob channel receiver X n modulation Alice (e.g., loss, noise) (may use quantum joint (may use entangled state over detection over n channel uses) N A → B n channel uses) S ( ρ ) = − Tr( ρ log ρ ) max p Xn ( x ) , ρ An ( x ) S ( P p X n ( x ) ρ B n ( x )) − P p X n ( x ) S ( ρ B n ( x )) Holevo capacity, C = sup n n

  5. “Superadditivity” on the transmitter and receiver side • Superadditivite capacity – Transmitter side: Using entangled states help achieve higher capacity – Receiver side: Quantum joint detection receiver helps achieve higher capacity • Channel not transmitter-side superadditive, it can still be receiver-side – Product state modulation is optimal (entanglement at transmitter doesn’t help) ⇣X ⌘ X – Holevo Capacity, C = max p X ( x ) ρ B ( x ) p X ( x ) S ( ρ B ( x )) p X S − Physical (quantum) receiver ρ B ( x ) Π ( y ) Y ρ A ( x ) X A B modulation channel Alice Bob (e.g., loss, noise) � � p Y | X ( y | x ) = Tr ρ B ( x ) Π ( y ) – Shown : receiver uses symbol by symbol detection; Shannon capacity C 1 < C – Joint detection receiver (JDR) required, unless orthogonal pure states ρ B ( x ) – Calculation of does not need receiver. Finding receiver achieving is hard C C

  6. <latexit sha1_base64="2zdAPgE4ZcHd6KZQblxI2SYPNfM=">AB/3icbVDLSsNAFJ34rPUVFdy4GSyCq5JUQZelblxWsA9oQriZTtqhkwczE6HELPwVNy4UcetvuPNvnKZaOuBC4dz7p079/gJZ1JZ1rexsrq2vrFZ2apu7+zu7ZsHh10Zp4LQDol5LPo+SMpZRDuKU7iaAQ+pz2/MnNzO89UCFZHN2raULdEYRCxgBpSXPHaKNzKfpzTPnDEoDLnX8syaVbcK4GVil6SGSrQ98sZxiQNaQIBykHtpUoNwOhGOE0rzqpAmQCYzoQNMIQirdrNid4zOtDHEQC12RwoX6eyKDUMp6OvOENRYLnoz8T9vkKrg2s1YlKSKRmS+KEg5VjGehYGHTFCi+FQTILpv2IyBgFE6ciqOgR78eRl0m3U7Yt64+6y1myVcVTQCTpF58hGV6iJblEbdRBj+gZvaI348l4Md6Nj3nrilHOHKE/MD5/AGuzlk=</latexit> <latexit sha1_base64="8CJV4lNc3Xzo3tZIY9IYC4eEe9Y=">AB/3icbVDLSsNAFJ34rPUVFdy4GSyCq5JUQZdFNy4r2gc0IUymk3bo5MHMjVBiFv6KGxeKuPU3Pk3TtMstPXAhcM5986de/xEcAW9W0sLa+srq1XNqbW9s7u+befkfFqaSsTWMRy5PFBM8Ym3gIFgvkYyEvmBdf3w9bsPTCoeR/cwSZgbkmHEA04JaMkzD53ijcwXKcszZ0QAk9y78yaVbcK4EVil6SGSrQ8sZxDQNWQRUEKX6tpWAmxEJnAqWV51UsYTQMRmyvqYRCZlys2J3jk+0MsBLHVFgAv190RGQqUmoa87QwIjNe9Nxf+8fgrBpZvxKEmBRXS2KEgFhPw8ADLhkFMdGEUMn1XzEdEUko6MiqOgR7/uRF0mnU7bN64/a81rwq46igI3SMTpGNLlAT3aAWaiOKHtEzekVvxpPxYrwbH7PWJaOcOUB/YHz+AIV3lmo=</latexit> <latexit sha1_base64="+o/YAEKp1gay/wxDUoGdm59neQ=">ACNHicbVDLSgMxFM3Ud31VXboJFsFVmVFBN4LUjSCIgtVCpw530tpaCYzJBmhDP0oN36IGxFcKOLWbzB9gI96IHA459zk5oSp4Nq47rNTmJqemZ2bXyguLi2vrJbW1q91kimGNZaIRNVD0Ci4xJrhRmA9VQhxKPAm7J4M/Js7VJon8sr0UmzGEne5gyMlYLSmT+8Iw9Fhn1fgIwE0tzvgKHQD6q3fguiCBX9Gfu2qa9GE0f0PKgGpbJbcYegk8QbkzIZ4yIoPfqthGUxSsMEaN3w3NQ0c1CGM4H9op9pTIF1IcKGpRJi1M18uEmfblulRduJskcaOlR/TuQa92LQ5uMwXT0X28g/uc1MtM+bOZcplByUYPtTNBTUIHDdIWV8iM6FkCTHG7K2UdUMCM7bloS/D+fnmSXO9WvL3K7uV+bg6rmOebJItskM8ckCOySm5IDXCyD15Iq/kzXlwXpx352MULTjmQ3yC87nF2mxq80=</latexit> <latexit sha1_base64="0F8L9FoJE+ujHIjawGhDzxiO8M=">AB/3icbVDLSsNAFJ34rPUVFdy4GSyCq5JUQZdFEVxWsA9oQriZTtqhkwczE6HELPwVNy4UcetvuPNvnKZaOuBC4dz7p079/gJZ1JZ1rextLyurZe2ahubm3v7Jp7+x0Zp4LQNol5LHo+SMpZRNuKU57iaAQ+px2/fH1O8+UCFZHN2rSULdEIYRCxgBpSXPHSKNzKfpzTPnBEoDLl345k1q24VwIvELkNlWh5pcziEka0kgRDlL2bStRbgZCMcJpXnVSRMgYxjSvqYRhFS6WbE7xydaGeAgFroihQv190QGoZST0NedIaiRnPem4n9eP1XBpZuxKEkVjchsUZByrGI8DQMPmKBE8YkmQATf8VkBAKI0pFVdQj2/MmLpNOo2f1xt15rXlVxlFBR+gYnSIbXaAmukUt1EYEPaJn9IrejCfjxXg3PmatS0Y5c4D+wPj8AXA/lw=</latexit> <latexit sha1_base64="N4AvTmFD3GZjPhzOYt8yQYcPg=">ACNnicbVBNSwMxEM36bf2qevQSLIKnslsFPYpevChKbRW6dZlNp9tgNrskWaEs/Ve/B3evHhQxKs/wfQDrK0PBh7vzUwmL0wF18Z1X52Z2bn5hcWl5cLK6tr6RnFzq6TDGsUQk6i4EjYJLrBluBN6lCiEOBd6GD2d9/YRleaJvDHdFJsxRJK3OQNjpaB4Q925KHIsOcLkJFAmvsdMBR6QfXeb0EUoaLjb829dVwrd1GVSDYsktuwPQaeKNSImMcBUX/xWwrIYpWECtG54bmqaOSjDmcBewc80psAeIMKGpRJi1M18cEuP7lmlRduJsiUNHajEznEWnfj0HbGYDp60uL/3mNzLSPmzmXaWZQsuFD7UxQk9B+hrTFTIjupYAU9zeSlkHFDBjky7YELzJL0+TeqXsHZQr14elk9NRHEtkh+ySfeKRI3JCzskVqRFGnsgreScfzrPz5nw6X8PWGWc0s03+wPn+AazmrQ=</latexit> <latexit sha1_base64="gs4xa3NhW4S870JRuBz8m2/9Ak=">ACTnicbVFNSyNBEO3JuhqzfkT36KUxCAuYSYKuxch6GWPfiUKmRBqOpWkSc+H3TVCGOYX7kW8+TP2sodlrWTzEFjHjQ8Xr2q6n4dJEoact1np/Rh5ePqWnm98mljc2u7urPbNnGqBbZErGJ9F4BJSNskSFd4lGCAOFt8H4fFq/fUBtZBzd0CTBbgjDSA6kALJSr4r+bEYWqBTzB8Bch7V/yU+ZeU+YjQe5/5Ut1/ywsHlHhXGp76xXrbl1dwb+ngFqbECF73qk9+PRpiREKBMR3PTaibgSYpFOYVPzWYgBjDEDuWRhCi6Waz3Tk/sEqfD2JtT0R8pr7uyCA0ZhIG1hkCjcxibSouq3VSGnzvZjJKUsJIzBcNUsUp5tNseV9qFKQmloDQ0t6VixFoEGR/oGJD8Baf/J60G3XvuN64PKk1z4o4ymyP7bMvzGPfWJP9YBesxQT7yX6xP+yv8+j8dv45/+fWklP0fGZvUCq/An2tgs=</latexit> <latexit sha1_base64="ds1Sc5HUGxchqQ9VKmYvHTpQkVA=">AB+HicbVDLSgNBEJyNrxgfWfXoZTAIOUjYjYIeg148RjAxkF3C7KSTDJmdXWZ6hRjyJV48KOLVT/Hm3zh5HDSxoKGo6qa7K0qlMOh5305ubX1jcyu/XdjZ3dsvugeHTZNkmkODJzLRrYgZkEJBAwVKaKUaWBxJeIiGN1P/4RG0EYm6x1EKYcz6SvQEZ2iljlsMABkNhKJl74z6YcteRVvBrpK/AUpkQXqHfcr6CY8i0Ehl8yYtu+lGI6ZRsElTApBZiBlfMj60LZUsRhMOJ4dPqGnVunSXqJtKaQz9fEmMXGjOLIdsYMB2bZm4r/e0Me1fhWKg0Q1B8vqiXSYoJnaZAu0IDRzmyhHEt7K2UD5hmHG1WBRuCv/zyKmlWK/5pXp3UapdL+LIk2NyQsrEJ5ekRm5JnTQIJxl5Jq/kzXlyXpx352PemnMWM0fkD5zPHzpEkYA=</latexit> The single-mode bosonic channel a † • Mean photon number per mode constraint at transmitter h ˆ a S i  N S S ˆ a † • Environment mode in thermal state, mean photon number h ˆ a B i = N B B ˆ Z 1 e − | β | 2 /N B | β ih β | d 2 β ρ B = ˆ a B π N B a R = √ η ˆ p ˆ ˆ a S + 1 − η ˆ a S a B η ∈ (0 , 1] ˆ a E • Any linear lossy propagation medium can be decomposed into a collection of single mode bosonic channels

  7. <latexit sha1_base64="ds1Sc5HUGxchqQ9VKmYvHTpQkVA=">AB+HicbVDLSgNBEJyNrxgfWfXoZTAIOUjYjYIeg148RjAxkF3C7KSTDJmdXWZ6hRjyJV48KOLVT/Hm3zh5HDSxoKGo6qa7K0qlMOh5305ubX1jcyu/XdjZ3dsvugeHTZNkmkODJzLRrYgZkEJBAwVKaKUaWBxJeIiGN1P/4RG0EYm6x1EKYcz6SvQEZ2iljlsMABkNhKJl74z6YcteRVvBrpK/AUpkQXqHfcr6CY8i0Ehl8yYtu+lGI6ZRsElTApBZiBlfMj60LZUsRhMOJ4dPqGnVunSXqJtKaQz9fEmMXGjOLIdsYMB2bZm4r/e0Me1fhWKg0Q1B8vqiXSYoJnaZAu0IDRzmyhHEt7K2UD5hmHG1WBRuCv/zyKmlWK/5pXp3UapdL+LIk2NyQsrEJ5ekRm5JnTQIJxl5Jq/kzXlyXpx352PemnMWM0fkD5zPHzpEkYA=</latexit> <latexit sha1_base64="nFKUj2LP49QZgKThCS4yx+/rK8=">ACGHicbVDLSgMxFM34rPU16tJNsAgt0jpTBd0Ipd24KhXtA9phyKSZNjTzIMkIZehnuPFX3LhQxG13/o2Zdha19cCFk3PuJfceJ2RUSMP40dbWNza3tjM72d29/YND/ei4JYKIY9LEAQt4x0GCMOqTpqSkU7ICfIcRtrOqJb47WfCBQ38JzkOieWhgU9dipFUkq1f1uAdHOR7RCJYtx/hBcybxeRVqNvVAiwqb1Eo2HrOKBkzwFVipiQHUjRsfdrBzjyiC8xQ0J0TSOUVoy4pJiRSbYXCRIiPEID0lXURx4RVjw7bALPldKHbsBV+RLO1MWJGHlCjD1HdXpIDsWyl4j/ed1IurdWTP0wksTH84/ciEZwCQl2KecYMnGiDMqdoV4iHiCEuVZVaFYC6fvEpa5ZJ5VSo/XOcq1TSODgFZyAPTHADKuAeNEATYPAC3sAH+NRetXftS/uet65p6cwJ+ANt+gsbSprU</latexit> Holevo capacity of the single-mode bosonic channel C = g ( η N S + (1 − η ) N B ) − g ((1 − η ) N B )) bits per mode • C > Shannon capacity of all known standard optical receivers • Product coherent state modulation achieves capacity • Need joint detection receiver (collective measurement over codeword) Z 1 e − | β | 2 /N B | β ih β | d 2 β ρ B = 1 π N B e − | α | 2 /N S p ( α ) = 1 Z π N S | α i e − | β −√ ηα | 2 / (1 − η ) N B | β ih β | d 2 β ρ R = π (1 � η ) N B η ∈ (0 , 1] g ( N ) = (1 + N ) log(1 + N ) − N log( N ) V. Giovannetti, SG, S. Lloyd, L. Maccone, J. H. Shapiro, and H. P. Yuen, Phys. Rev. Lett. 92, 027902 (2004) V. Giovannetti, SG, S. Lloyd, L. Maccone, and J. H. Shapiro, Phys. Rev. A (2004) V. Giovannetti, R. García-Patrón, N. J. Cerf, and A. S. Holevo, Nat. Photonics 8, 796 (2014)

  8. Quantum limit of classical (optical) communications over a lossy channel, with an input mean photon number constraint N B = 0 ��� N g ( N ) = (1 + N ) log(1 + N ) − N log( N ) C ( N ) C N 1 2 log(1 + 4 N ) log(1 + N ) ���� N N = η N S η ∼ e − α L fiber η ∼ 1 /L 2 free-space C ( N ) Transmissivity η : Mean photon number Giovannetti, SG, Lloyd, Maccone, Shapiro, & Yuen, PRL (2004) N S : transmitted per mode Takeoka and SG, Physical Review A 89, 042309 (2014)

  9. Outline • Background – Quantum limit of classical communications – Joint detection receivers for superadditive capacity • Entanglement assisted communications over the bosonic channel – Transmitter-receiver design – Infinite-fold capacity enhancement with pre-shared entanglement • Conclusions and ongoing work

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend