inductive definitions for discrete plane geometry
play

Inductive definitions for discrete plane geometry. Jean Duprat* - PowerPoint PPT Presentation

Inductive definitions for discrete plane geometry. Jean Duprat* Laurent Vuillon** *Lip, ENS-Lyon **Lama, Universit de Savoie. The discrete plane like Z 2 . Each pixel is defined by its coordinates (x,y). A line is defined by an


  1. Inductive definitions for discrete plane geometry. Jean Duprat* Laurent Vuillon** *Lip, ENS-Lyon **Lama, Université de Savoie.

  2. The discrete plane like Z 2 .  Each pixel is defined by its coordinates (x,y).  A line is defined by an execution of Bresenham’s algorithm or by a Diophantin inequation  20 ≤ 5y-3x ≤ 24

  3. Objectives and limitations.  Intrinsic constructive inductive definitions.  Now :  strict first quadrant N *2 .  only positive slope lines.

  4. Directing vectors. u>  Inductive definition :  u > is a DV, v>  if v > is a DV then N(v > ) is a DV, Nv>  if v > is a DV then D(v > ) is a DV.  Symmetry π : Dv>  π (u > )= u > ,  π (N(v > ))=D( π (v > )), � v>  π (D(v > ))=N( π (v > )).

  5. Vectors.  v > is a DV and α a strictly positive integer 1v> then α .v > is a vector.  Over-notations :  we identify v > and 1.v > ,  we note π ( α .v > ) the 3v> vector α .( π (v > )),  we extend the constructors N and D by :  N α v > = α Nv > ,  D α v > = α Dv > .

  6. Coordinates of a vector. (1,1) The coordinates of the  vector v > is the couple of (5,3) integers computed by : the coordinates of u > are (8,3)  (1,1), if the coordinates of v > are  (x,y) then (5,8)  the coordinates of Nv > are (x+y,y),  the coordinates of Dv > are (x,x+y),  the coordinates of α v > are (15,9) ( α x, α y).

  7. Points.  There is a bijection ε 1v> between vectors and points.  ε : v > -> A.  U= ε (u > ). A

  8. Transformations. h α : A -> B.  if A = ε ( β . v > ) then  B = ε (( αβ ) .v > ), (we note B= α A) 3A n : A -> B.  dA if A = ε ( α .v > ) then  B = ε ( α .N(v > )), (we note B=nA) pA d : A -> B.  A nA if A = ε ( α .v > ) then  B = ε ( α .D(v > )), (we note B=dA) p : A -> B.  if A= ε (v > ) then  B = ε ( π (v > )), (we note B=pA).

  9. Canonical notation. For each point A, there exist  a non null integer α , an dnddnnU integer m and two sequences of integers x 0 , x 1 , …, x m and y 0 , y 1 , …, y m which are not null when they exist except eventually x 0 and y m such that : ddnnU nddnnU A = n x 0 d y 0 n x 1 d y 1 K n x m d y m � U Example :  U nnU A = dnd 2 n 2 U. 

  10. Similarities.  Given v > a vector, the similarity of v > B=dndA changes A into B :  if v > = α N x 0 D y 0 N x 1 D y 1 …N x m D y m u > then B= α n x 0 d y 0 n x 1 d y 1 …n x m d y m A . We note B = v > A.  Example : A=dnnU  A = dn 2 U,  v > = dndu > , U  B = v > A.

  11. Coordinates. X : P -> nat Example :   X(dnd 2 n 2 U) =  X(U)=1,  X(nd 2 n 2 U) = X(nA)=X(A)+X(pA), X(d 2 n 2 U) + X(n 2 d 2 U) =  X(n 2 U) + X(nd 2 U) + X(dn 2 U) = X(dA)=X(A),  X(nU) + X(dU) + X(d 2 U) + X(n 2 U) + X(n 2 U) X( α A)= α X(A).  = X(U) + X(U) + X(U) + X(dU) + X(nU) + Y : P -> nat  X(dU) + X(nU) + X(dU) = Y(U)=1, 3 + X(U) + X(U) + X(U) + X(U) + X(U) +  X(U) + X(U) = Y(nA)=Y(A),  10. Y(dA)=Y(A)+Y(pA), Y(dnd 2 n 2 U) =   Y( α A)= α Y(A). Y(nd 2 n 2 U) + Y(dn 2 d 2 U) =  Y(d 2 n 2 U) + Y(n 2 d 2 U) + Y(d 2 n 2 U) = Fast computation :  Y(n 2 U) + 2Y(d 2 U) + Y(d 2 U) + Y(n 2 U) + X(n α A)=X(A)+ α X(pA). 2Y(d 2 U) =  2Y(U) + 5(Y(U) + 2Y(U)) = Y(d α A)=Y(A)+ α Y(pA).  2 + 15 = 17.

  12. Generators.  We call generators the sets of points : Gv7 Gdd  Gdd = { α U},  Gh α = {A | Y(A) = α },  Gv α = {A | X(A) = α }. Gh4  Examples :  Gdd,  Gh4,  Gv7.

  13. Lines. A line L is defined by a  L directing vector v > and a generator G : if G = Gdd then  L = {v > A | A ∈ Gdd} noted <v > ,Gdd>, if G = Gh α then  L = {v > dA | A ∈ Gh α } noted <v > ,Gh α >, if G = Gv α then  Gh4 L = {v > nA | A ∈ Gv α } noted <v > ,Gv α >. Example :  L = <DNu > , Gh4>. 

  14. Bundle of lines. A bundle of lines is built with  lines having the same directing vector v > and consecutives generators : {<v > ,Gh α } i ≤ α ≤ j ,  {<v > ,Gdd} ∪ {<v > ,Gh α } 0 ≤ α ≤ j ,  {<v > ,Gv α } 0 ≤ α ≤ j ∪ {<v > ,Gdd} ∪  {<v > ,Gh β } 0 ≤ β ≤ j , {<v > ,Gv α } 0 ≤ α ≤ j ∪ {<v > ,Gdd},  {<v > ,Gv α } i ≤ α ≤ j .  The width of a bundle is the  Gh4 number of generators. Gh3 Example : Gh2  {<DNu > , Gh α } 2 ≤ α ≤ 4 . 

  15. Bresenham drawing. A bundle of directing vector  v > is connected by vertex if the  width is greater or equal to max(x,y) where (x,y) are the coordinates of v > , connected by edge if the  width is greater or equal to x+y where (x,y) are the coordinates of v > . Example :  {<DNu > ,Gdd} ∪  {<DNu > , Gh α } 1 ≤ α ≤ 4 .

  16. Incidence check. A point A belongs to a line L =  L <v > ,G> if there exists a point B such A=dndB if G = Gdd then A = v > B and B  = α U, if G=Gh α then A = v > dB and  Y(B) = α , if G = Gv α then A = v > nB and  X(C) = α . Example :  A = dnd 2 n 2 U  belongs to Gh4 B=dnnU L = <DNu > ,Gh4> since A = DNu > dB with B = dn 2 U.

  17. Incidences.  There are a finite  Example : number of lines  A=dnd 2 n 2 U belongs to : passing through a point  L1=<u > , Gh7>, A.  L2=<Du > , Gv3>, A = n x 0 d y 0 n x 1 d y 1 K n x m d y m � U  L3=<DNu > , Gh4>,  The directing vectors of  L4=<DNDu > , Gh1>, these lines are  L5=<DND 2 u > , Gv2>, deduced by the  L6=<DND 2 Nu > , Gv1>, beginning word of the  L7=<DND 2 N 2 u > , Gdd>. canonical representation of A.

  18. Example of incidences. L L L Gv3 A=dB A=dnB A=dndB B=nddnnU B=ddnnU Gh7 Gh4 B=dnnU L L L L Gv1 Gv2 A=dnddB A=dnddnB A=dnddnnB A=dndB Gdd Gh1 B=nnU B=nU B=U B=U

  19. Future work.  How to extend such a study to the whole plane ?  How to extend the definition of lines to the negative slope lines ? (and to null or infinite slope lines ?)  Does it exists a better definition of generators ?  With such a representation of vectors, does it exist a suitable algorithm to implement the addition of vectors ?

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend