indoor localization accuracy estimation from fingerprint
play

Indoor Localization Accuracy Estimation from Fingerprint Data Artyom - PowerPoint PPT Presentation

Indoor Localization Accuracy Estimation from Fingerprint Data Artyom Nikitin 1 Christos Laoudias 2 Georgios Chatzimilioudis 2 Panagiotis Karras 3 Demetrios Zeinalipour-Yazti 2 , 4 1 Skoltech, 143026 Moscow, Russia 2 University of Cyprus, 1678


  1. Indoor Localization Accuracy Estimation from Fingerprint Data Artyom Nikitin 1 Christos Laoudias 2 Georgios Chatzimilioudis 2 Panagiotis Karras 3 Demetrios Zeinalipour-Yazti 2 , 4 1 Skoltech, 143026 Moscow, Russia 2 University of Cyprus, 1678 Nicosia, Cyprus 3 Aalborg University, 9220 Aalborg, Denmark 4 Max-Planck-Institut f¨ ur Informatik, 66123 Saarbr¨ ucken, Germany

  2. Outline 1 Motivation 2 Background 3 Our Solution 4 Experiments 5 Conclusions 2/31 IEEE MDM 2017 | Nikitin, Laoudias, Chatzimilioudis, Karras, Zeinalipour

  3. Motivation: Indoor Localization Indoor Navigation Services spread widely. Applications: localization, marketing, warehouse optimization, guides, games, etc. 3/31 IEEE MDM 2017 | Nikitin, Laoudias, Chatzimilioudis, Karras, Zeinalipour

  4. Motivation: Indoor Localization Indoor Navigation Services spread widely. Applications: localization, marketing, warehouse optimization, guides, games, etc. Different sources of data: cellular, Wi-Fi, BT, magnetic field of the Earth, light, sound, etc. 3/31 IEEE MDM 2017 | Nikitin, Laoudias, Chatzimilioudis, Karras, Zeinalipour

  5. Motivation: Accuracy Estimation Important to estimate the accuracy of localization. 4/31 IEEE MDM 2017 | Nikitin, Laoudias, Chatzimilioudis, Karras, Zeinalipour

  6. Motivation: Accuracy Estimation Important to estimate the accuracy of localization. Online: important for the end-user (Google Maps, CONE). 4/31 IEEE MDM 2017 | Nikitin, Laoudias, Chatzimilioudis, Karras, Zeinalipour

  7. Motivation: Accuracy Estimation Important to estimate the accuracy of localization. Online: important for the end-user (Google Maps, CONE). Offline: important for the service provider. Provide quality guarantees. Perform decision making. 4/31 IEEE MDM 2017 | Nikitin, Laoudias, Chatzimilioudis, Karras, Zeinalipour

  8. Outline 1 Motivation 2 Background 3 Our Solution 4 Experiments 5 Conclusions 5/31 IEEE MDM 2017 | Nikitin, Laoudias, Chatzimilioudis, Karras, Zeinalipour

  9. Background: Localization Approaches Modeling Known APs positions Known data model, e.g., Path Loss: L = 10 n log 10 ( d ) + C 6/31 IEEE MDM 2017 | Nikitin, Laoudias, Chatzimilioudis, Karras, Zeinalipour

  10. Background: Localization Approaches Modeling + Fingerprinting Known APs positions Known data model, e.g., Path Loss: L = 10 n log 10 ( d ) + C Known pre-collected fingerprints (position + readings) 6/31 IEEE MDM 2017 | Nikitin, Laoudias, Chatzimilioudis, Karras, Zeinalipour

  11. Background: Localization Approaches Fingerprinting Known APs positions Known data model, e.g., Path Loss: L = 10 n log 10 ( d ) + C Known pre-collected fingerprints (position + readings) 6/31 IEEE MDM 2017 | Nikitin, Laoudias, Chatzimilioudis, Karras, Zeinalipour

  12. Background: Accuracy Estimation Existing solutions Heuristics: e.g., fingerprint density, cluster & merge, etc. + Do not require models − No theoretical guarantees Theoretical: e.g., use Cramer-Rao Lower Bound (CRLB) + Provide theoretical guarantees − Model is required Our goal: + No model required + Provide guarantees via CRLB 7/31 IEEE MDM 2017 | Nikitin, Laoudias, Chatzimilioudis, Karras, Zeinalipour

  13. Background: Accuracy Estimation Common theoretical approach for offline accuracy estimation: 1 Measurements are random, e.g., Gaussian. 8/31 IEEE MDM 2017 | Nikitin, Laoudias, Chatzimilioudis, Karras, Zeinalipour

  14. Background: Accuracy Estimation Common theoretical approach for offline accuracy estimation: 1 Measurements are random, e.g., Gaussian. 2 From the known information estimate the likelihood , i.e., the probability p ( m | r ) of measuring m at r . 8/31 IEEE MDM 2017 | Nikitin, Laoudias, Chatzimilioudis, Karras, Zeinalipour

  15. Background: Accuracy Estimation Common theoretical approach for offline accuracy estimation: 1 Measurements are random, e.g., Gaussian. 2 From the known information estimate the likelihood , i.e., the probability p ( m | r ) of measuring m at r . 3 From the likelihood calculate Cramer-Rao Lower Bound (CRLB) on the variance of any unbiased estimator of r . 8/31 IEEE MDM 2017 | Nikitin, Laoudias, Chatzimilioudis, Karras, Zeinalipour

  16. Background: Accuracy Estimation Common theoretical approach for offline accuracy estimation: 1 Measurements are random, e.g., Gaussian. 2 From the known information estimate the likelihood , i.e., the probability p ( m | r ) of measuring m at r . 3 From the likelihood calculate Cramer-Rao Lower Bound (CRLB) on the variance of any unbiased estimator of r . 8/31 IEEE MDM 2017 | Nikitin, Laoudias, Chatzimilioudis, Karras, Zeinalipour

  17. Background: Accuracy Estimation Common theoretical approach for offline accuracy estimation: 1 Measurements are random, e.g., Gaussian. 2 From the known information estimate the likelihood , i.e., the probability p ( m | r ) of measuring m at r . 3 From the likelihood calculate Cramer-Rao Lower Bound (CRLB) on the variance of any unbiased estimator of r . 8/31 IEEE MDM 2017 | Nikitin, Laoudias, Chatzimilioudis, Karras, Zeinalipour

  18. Background: Accuracy Estimation How to find the likelihood ? 9/31 IEEE MDM 2017 | Nikitin, Laoudias, Chatzimilioudis, Karras, Zeinalipour

  19. Background: Accuracy Estimation Modeling. We know: Model, e.g., Path Loss: L = 10 n log 10 ( | x − x AP | ) + C 4 π Model parameters, e.g., n = 2 , C = 20 log 10 λ (FSPL) Position x AP of the AP Noise 10/31 IEEE MDM 2017 | Nikitin, Laoudias, Chatzimilioudis, Karras, Zeinalipour

  20. Background: Accuracy Estimation Modeling. We know: Model, e.g., Path Loss: L = 10 n log 10 ( | x − x AP | ) + C 4 π Model parameters, e.g., n = 2 , C = 20 log 10 λ (FSPL) Position x AP of the AP Noise 1 Predict using model 10/31 IEEE MDM 2017 | Nikitin, Laoudias, Chatzimilioudis, Karras, Zeinalipour

  21. Background: Accuracy Estimation Modeling. We know: Model, e.g., Path Loss: L = 10 n log 10 ( | x − x AP | ) + C 4 π Model parameters, e.g., n = 2 , C = 20 log 10 λ (FSPL) Position x AP of the AP Noise 1 Predict using model 2 Estimate noise 10/31 IEEE MDM 2017 | Nikitin, Laoudias, Chatzimilioudis, Karras, Zeinalipour

  22. Background: Accuracy Estimation Modeling. We know: Model, e.g., Path Loss: L = 10 n log 10 ( | x − x AP | ) + C 4 π Model parameters, e.g., n = 2 , C = 20 log 10 λ (FSPL) Position x AP of the AP Noise 1 Predict using model 2 Estimate noise 3 Compare to measurements 10/31 IEEE MDM 2017 | Nikitin, Laoudias, Chatzimilioudis, Karras, Zeinalipour

  23. Background: Accuracy Estimation Modeling + Fingerprinting. We know: Model, e.g., Path Loss: L = 10 n log 10 ( | x − x AP | ) + C 4 π Model parameters, e.g., n = 2 , C = 20 log 10 λ Position x AP of the AP Noise 11/31 IEEE MDM 2017 | Nikitin, Laoudias, Chatzimilioudis, Karras, Zeinalipour

  24. Background: Accuracy Estimation Modeling + Fingerprinting. We know: Model, e.g., Path Loss: L = 10 n log 10 ( | x − x AP | ) + C 4 π Model parameters, e.g., n = 2 , C = 20 log 10 λ Position x AP of the AP Noise 1 Assume parametric model 11/31 IEEE MDM 2017 | Nikitin, Laoudias, Chatzimilioudis, Karras, Zeinalipour

  25. Background: Accuracy Estimation Modeling + Fingerprinting. We know: Model, e.g., Path Loss: L = 10 n log 10 ( | x − x AP | ) + C 4 π Model parameters, e.g., n = 2 , C = 20 log 10 λ Position x AP of the AP Noise 1 Assume parametric model 2 Get fingerprints 11/31 IEEE MDM 2017 | Nikitin, Laoudias, Chatzimilioudis, Karras, Zeinalipour

  26. Background: Accuracy Estimation Modeling + Fingerprinting. We know: Model, e.g., Path Loss: L = 10 n log 10 ( | x − x AP | ) + C 4 π Model parameters, e.g., n = 2 , C = 20 log 10 λ Position x AP of the AP Noise 1 Assume parametric model 2 Get fingerprints 3 Estimate parameters 11/31 IEEE MDM 2017 | Nikitin, Laoudias, Chatzimilioudis, Karras, Zeinalipour

  27. Background: Accuracy Estimation Modeling + Fingerprinting. We know: Model, e.g., Path Loss: L = 10 n log 10 ( | x − x AP | ) + C 4 π Model parameters, e.g., n = 2 , C = 20 log 10 λ Position x AP of the AP Noise 1 Assume parametric model 2 Get fingerprints 3 Estimate parameters 4 Estimate noise 11/31 IEEE MDM 2017 | Nikitin, Laoudias, Chatzimilioudis, Karras, Zeinalipour

  28. Background: Accuracy Estimation Pure Fingerprinting No model provided. 12/31 IEEE MDM 2017 | Nikitin, Laoudias, Chatzimilioudis, Karras, Zeinalipour

  29. Background: Accuracy Estimation Pure Fingerprinting No model provided. Data is too complex, e.g., ambient magnetic field: vector field = direction + magnitude; predictable outdoors; perturbed indoors by metal constructions and electrical equipment. 12/31 IEEE MDM 2017 | Nikitin, Laoudias, Chatzimilioudis, Karras, Zeinalipour

  30. Background: Accuracy Estimation Pure Fingerprinting No model provided. Data is too complex, e.g., ambient magnetic field: vector field = direction + magnitude; predictable outdoors; perturbed indoors by metal constructions and electrical equipment. 12/31 IEEE MDM 2017 | Nikitin, Laoudias, Chatzimilioudis, Karras, Zeinalipour

  31. Outline 1 Motivation 2 Background 3 Our Solution 4 Experiments 5 Conclusions 13/31 IEEE MDM 2017 | Nikitin, Laoudias, Chatzimilioudis, Karras, Zeinalipour

  32. Our solution: Goal Pure fingerprinting approach Arbitrary data sources FM = { ( r i , m i ) : i = 1 , N , r i ∈ R d r , m i ∈ R d m } m i - d m -dimensional vector of measurements at location r i . Given the FM, assign to any location a navigability score . Visualize navigability scores to assist INS deployer. 14/31 IEEE MDM 2017 | Nikitin, Laoudias, Chatzimilioudis, Karras, Zeinalipour

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend