in the hh b
play

IN THE hh b USING THE ATLAS DETECTOR 2 August 2017 Benjamin - PowerPoint PPT Presentation

SEARCH FOR EXOTIC DIHIGGS PRODUCTION bWW DECAY CHANNEL IN THE hh b USING THE ATLAS DETECTOR 2 August 2017 Benjamin Tannenwald q q b DIHIGGS SEARCH Search for non-resonant (SM) and resonant (exoc) dihiggs producon in b


  1. SEARCH FOR EXOTIC DIHIGGS PRODUCTION bWW ∗ DECAY CHANNEL IN THE hh → b ¯ USING THE ATLAS DETECTOR 2 August 2017 Benjamin Tannenwald

  2. q q b DIHIGGS SEARCH → Search for non-resonant (SM) and resonant (exo�c) dihiggs produc�on in b bWW ∗ final state the b ¯ ¯ b → Second highest branching frac�on a�er hh → b ¯ bb ¯ h m h → Analysis in semileptonic decay h bWW ∗ → b ¯ channel, i.e. b ¯ b ℓν q ¯ W (*) m W → Three selec�on strategies: m h l non-resonant, low resonant mass, high W (*) resonant mass ν m W → Require one charged lepton ( e , µ ), ≥ 4 q q jets, = 2 b-tags bWW ∗ → b ¯ → First search using b ¯ b ℓν q ¯ final state 1/15

  3. DATASET + OBJECT SELECTION → Use 36.5 � − 1 of data from 13 TeV proton-proton collisions recorded by the ATLAS detector in 2015-2016 → Monte Carlo simula�ons used for dihiggs signal, t ¯ t , W+jets, Z+jets, diboson, and single top backgrounds → t ¯ t normaliza�on calculated using data in control region → Data-driven ABCD method used to es�mate mul�-jet QCD background Object Selec�on Event Selec�on Lepton trigger Lepton: p ℓ T > 27 GeV, | η ℓ | < 2.5, At least 1 primary vertex with ≥ 5 tracks track-based isola�on Jets: An�- k T R=0.4 jets, p jet N ℓ = 1 T > 20 GeV, | η jet | < N jets ≥ 4 2.5, | JVF | > 0.59, 85% b -tagging efficiency Categorize by N b -tags = 2 MET: MET ≥ 25 GeV → Create m b ¯ b control region (m b ¯ b < 100, m b ¯ b > 140 GeV) to validate techniques and op�mize search strategies for resonant and non-resonant hh produc�on → Blind signal region (100 < m b ¯ b < 140 GeV) to avoid bias 2/15

  4. EVENT RECONSTRUCTION Largest background contribu�ons come from t ¯ t and mul�-jet processes 3/15

  5. b p WW EVENT SELECTION Variable Non-resonant Low-mass High-mass MET [GeV] > 25 [GeV] > 250 T m b ¯ b [GeV] 105 − 135 m WW [GeV] < 130 < 130 no cut p b ¯ T [GeV] > 300 > 210 > 350 ∆ R WW no cut no cut < 1 . 5 [625 , 775] † [1910 , 2170] † m hh [GeV] no cut → Selec�on variables differ between analysis strategies → Variables and cuts chosen by calcula�ng Poisson signifiance (including systema�cs) at end of each selec�on → † - m hh cuts are dependent on resonance mass under considera�on → Two cut windows are shown above for for 700 GeV (low-mass) resonance and 2000 GeV (high-mass) resonance 4/15

  6. QCD ESTIMATION: ABCD METHOD → Mul�-jet backgrounds enter event selec�on due to jets mis-iden�fied as leptons and non-prompt lepton produc�on → Such processes not well-modeled by simula�on, so use data-driven ABCD method to es�mate contribu�ons in selected phase space → ABCD es�ma�on is a 2D sideband method where the signal region, A, has two (uncorrelated) cuts inverted to create three independent control regions → Using | d 0 / σ d 0 | and MET as independent ABCD variables 5 | 0 d σ 4.5 / 0 Lepton |d → A region: | d 0 / σ d 0 | < 2.0 4 D C and MET > 25 GeV 3.5 3 → B region: | d 0 / σ d 0 | < 2.0 2.5 and MET < 25 GeV 2 → C region: | d 0 / σ d 0 | > 2.0 1.5 and MET > 25 GeV 1 B A 0.5 → D region: | d 0 / σ d 0 | > 2.0 0 and MET < 25 GeV 0 20 40 60 80 100 120 140 160 180 200 Missing Transverse Energy [GeV] 5/15

  7. B D A C D B C A i i A i QCD ESTIMATION: ABCD CALCULATION To es�mate N non-prompt ( N non-prompt − N All MC Bkgs = N Data ), the following formula is used: · N non-prompt N non-prompt = R · N non-prompt N non-prompt → Assump�on is that difference in behavior between B and D regions is iden�cal to difference between A and C regions N non-prompt N non-prompt → Ra�o a�er 1 st cut ≡ R applied to subsequent QCD yields N non-prompt N non-prompt 5 | 0 d σ 4.5 / 0 → QCD (non-prompt) shape in Lepton |d 4 C region taken to be shape D C 3.5 in A region 3 2.5 → Freeze B and D regions at 2 early stage in cu�low to 1.5 reduce sta�s�cal error in 1 B A final es�ma�on 0.5 0 0 20 40 60 80 100 120 140 160 180 200 Missing Transverse Energy [GeV] 6/15

  8. b CONTROL REGION KINEMATICS (NON-RESONANT + LOW-MASS) Events Events 500 ATLAS Work In Progress ATLAS Work In Progress 350 Data Data ∫ ∫ -1 -1 Ldt = 36.5 fb s = 13 TeV Ldt = 36.5 fb s = 13 TeV 300 hh(NonRes)X5 hh(NonRes)X5 hh → WWbb, mBBcr, bbpt > 210 hh → WWbb, mBBcr, bbpt > 210 400 250 Dibosons Dibosons 300 SingleTop SingleTop 200 Z+jets Z+jets 150 200 QCD QCD 100 100 W+jets W+jets 50 t t t t 0 0 0.8 0.8 (Data-Bkg)/Bkg (Data-Bkg)/Bkg (Data-Bkg)/Bkg (Data-Bkg)/Bkg 0.6 0.6 0.4 0.4 Stat Stat 0.2 0.2 0 0 0.2 0.2 Stat+Sys Stat+Sys − − − 0.4 − 0.4 − 0.6 − 0.6 − 0.8 − 0.8 0 20 40 60 80 100 120 140 160 180 200 0 100 200 300 400 500 600 700 800 900 1000 m [GeV] m [GeV] T bb → Distribu�ons above in m b ¯ b control region a�er requiring m WW < 130 GeV and p b ¯ T > 210 GeV → m W T (le�) shows Data/Bkg agreement consistent within error using ABCD es�ma�on → m b ¯ b (right) shows backgrounds well modeled in m b ¯ b sideband 7/15

  9. b CONTROL REGION KINEMATICS (HIGH MASS) Events Events 4500 ATLAS Work In Progress ATLAS Work In Progress 3500 Data Data ∫ ∫ -1 -1 Ldt = 36.5 fb s = 13 TeV 4000 Ldt = 36.5 fb s = 13 TeV hh(m_X 2000)X5 hh(m_X 2000)X5 3000 hh → WWbb, mBBcr, bbpt > 350 hh → WWbb, mBBcr, bbpt > 350 3500 Dibosons Dibosons 2500 3000 SingleTop SingleTop 2500 2000 2000 Z+jets Z+jets 1500 1500 QCD QCD 1000 1000 W+jets W+jets 500 500 t t t t 0 0 0.8 0.8 (Data-Bkg)/Bkg (Data-Bkg)/Bkg (Data-Bkg)/Bkg (Data-Bkg)/Bkg 0.6 0.6 0.4 0.4 Stat Stat 0.2 0.2 0 0 0.2 0.2 Stat+Sys Stat+Sys − − − 0.4 − 0.4 − 0.6 − 0.6 − 0.8 − 0.8 0 20 40 60 80 100 120 140 160 180 200 0 100 200 300 400 500 600 700 800 900 1000 m [GeV] m [GeV] T bb b control region a�er requiring p b ¯ → Distribu�ons above in m b ¯ T > 350 GeV → m W T (le�) shows Data/Bkg agreement consistent within error using ABCD es�ma�on → m b ¯ b (right) shows backgrounds well modeled in m b ¯ b sideband 8/15

  10. b t t p WW b CONTROL REGION EVENT YIELDS: NON-RESONANT Top Control Region: m b ¯ b Sideband p b ¯ p b ¯ Sample m WW < 130 T > 210 T > 300 > 250 m b ¯ b Window T t ¯ 23776.6 ± 87.2 531.7 ± 13.1 109.9 ± 5.9 63.9 ± 4.6 0.0 ± 0.0 QCD 13310.5 ± 500.3 250.2 ± 30.6 33.7 ± 4.1 21.4 ± 2.6 0.0 ± 0.0 W+jets 3938.9 ± 31.1 124.7 ± 3.5 29.3 ± 1.4 17.1 ± 1.1 0.0 ± 0.0 Single Top 1605.4 ± 18.0 76.0 ± 3.8 20.1 ± 2.0 13.5 ± 1.7 0.0 ± 0.0 Diboson 109.9 ± 2.7 8.3 ± 0.8 2.2 ± 0.4 1.5 ± 0.4 0.0 ± 0.0 Z+jets 1107.6 ± 8.4 27.1 ± 0.8 6.7 ± 0.4 2.4 ± 0.2 0.0 ± 0.0 Background Sum 43849.0 ± 509.2 1017.9 ± 33.7 201.9 ± 7.6 119.8 ± 5.7 0.0 ± 0.0 Non-resonant hh 44.6 ± 2.2 9.1 ± 0.7 1.5 ± 0.2 1.1 ± 0.1 0.0 ± 0.0 Data 43902.0 1069.0 206.0 138.0 0.0 Signal Region: 100 < m b ¯ b < 140 GeV t ¯ 7461.0 ± 48.6 162.9 ± 7.3 27.9 ± 2.9 18.4 ± 2.4 15.4 ± 2.2 QCD 2756.2 ± 210.5 48.7 ± 14.2 6.6 ± 1.9 4.2 ± 1.2 3.6 ± 1.6 W+jets 640.8 ± 12.7 19.1 ± 1.4 5.0 ± 0.6 3.1 ± 0.5 2.3 ± 0.4 Single Top 452.2 ± 9.6 14.3 ± 1.7 1.7 ± 0.5 1.0 ± 0.4 0.6 ± 0.3 Diboson 21.6 ± 1.3 0.6 ± 0.2 0.4 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 Z+jets 262.8 ± 4.4 3.1 ± 0.3 1.0 ± 0.2 0.2 ± 0.1 0.2 ± 0.1 Background Sum 11594.7 ± 216.7 248.6 ± 16.1 42.6 ± 3.6 27.0 ± 2.8 22.1 ± 2.8 Non-resonant hh 68.3 ± 2.4 20.7 ± 0.9 6.7 ± 0.4 5.5 ± 0.3 4.8 ± 0.3 Data — — — — — → RED is m b ¯ b control region, BLUE is final signal region → Non-resonant signal normalized to ATLAS 8 TeV upper limit (0.59 pb) → Uncertain�es are sta�s�cal only 9/15

  11. t b t p WW CONTROL REGION EVENT YIELDS: LOW-MASS Top Control Region: m b ¯ b Sideband p b ¯ Sample m WW < 130 T > 210 > 250 m hh Window m b ¯ b Window T t ¯ 23776.6 ± 87.2 531.7 ± 13.1 175.6 ± 7.5 34.4 ± 3.3 0.0 ± 0.0 QCD 13310.5 ± 500.3 250.2 ± 30.6 72.4 ± 8.9 16.3 ± 2.0 0.0 ± 0.0 W+jets 3938.9 ± 31.1 124.7 ± 3.5 45.7 ± 2.1 8.7 ± 1.1 0.0 ± 0.0 Single Top 1605.4 ± 18.0 76.0 ± 3.8 28.4 ± 2.4 5.1 ± 1.0 0.0 ± 0.0 Diboson 109.9 ± 2.7 8.3 ± 0.8 2.8 ± 0.5 0.5 ± 0.2 0.0 ± 0.0 Z+jets 1107.6 ± 8.4 27.1 ± 0.8 5.8 ± 0.4 1.2 ± 0.2 0.0 ± 0.0 Background Sum 43849.0 ± 509.2 1017.9 ± 33.7 330.7 ± 12.1 66.2 ± 4.1 0.0 ± 0.0 4.2 ± 0.2 2.2 ± 0.1 1.5 ± 0.1 0.6 ± 0.1 0.0 ± 0.0 m H = 700 Data 43902.0 1069.0 367.0 89.0 0.0 Signal Region: 100 < m b ¯ b < 140 GeV t ¯ 7461.0 ± 48.6 162.9 ± 7.3 61.5 ± 4.7 12.4 ± 1.9 7.6 ± 1.4 QCD 2756.2 ± 210.5 48.7 ± 14.2 14.1 ± 4.1 3.2 ± 0.9 2.8 ± 1.2 W+jets 640.8 ± 12.7 19.1 ± 1.4 9.7 ± 1.1 2.9 ± 0.6 1.6 ± 0.4 Single Top 452.2 ± 9.6 14.3 ± 1.7 2.6 ± 0.7 0.5 ± 0.2 0.3 ± 0.2 Diboson 21.6 ± 1.3 0.6 ± 0.2 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 Z+jets 262.8 ± 4.4 3.1 ± 0.3 0.6 ± 0.1 0.1 ± 0.0 0.1 ± 0.0 Background Sum 11594.7 ± 216.7 248.6 ± 16.1 88.7 ± 6.4 19.2 ± 2.2 12.6 ± 1.9 m H = 700 9.2 ± 0.3 7.8 ± 0.2 5.9 ± 0.2 3.8 ± 0.2 3.4 ± 0.2 Data — — — — — → RED is m b ¯ b control region, BLUE is final signal region → Resonant m H = 700 GeV cross-sec�on normalized to ATLAS 8 TeV upper limit (0.044 pb) → Uncertain�es are sta�s�cal only 10/15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend