imup imup a maple package for uniformity improved
play

ImUp ImUp: A Maple Package for Uniformity-Improved - PowerPoint PPT Presentation

ImUp ImUp: A Maple Package for Uniformity-Improved Reparameterization of Plane Curves Jing Yang LMIB Beihang University Dongming Wang CNRS Universit e Pierre et Marie Curie Hoon Hong North Carolina State University 27 October,


  1. ImUp ImUp: A Maple Package for Uniformity-Improved Reparameterization of Plane Curves Jing Yang LMIB – Beihang University Dongming Wang CNRS – Universit´ e Pierre et Marie Curie Hoon Hong North Carolina State University 27 October, ASCM 2012 J. Yang (BUAA/NCSU) ASCM 2012 27 October, 2012 1 / 30

  2. Outline Problem 1 Methods 2 Implementation 3 Examples and Experiments 4 Summary 5 J. Yang (BUAA/NCSU) ASCM 2012 27 October, 2012 2 / 30

  3. Outline Problem 1 Methods 2 Implementation 3 Examples and Experiments 4 Summary 5 J. Yang (BUAA/NCSU) ASCM 2012 27 October, 2012 3 / 30

  4. Angular Speed Uniformity J. Yang (BUAA/NCSU) ASCM 2012 27 October, 2012 4 / 30

  5. Angular Speed Uniformity Given a parameterization p = ( x, y ) : [0 , 1] → R 2 , let arctan y ′ � , � � θ p = x ′ , ω p = � θ ′ p � 1 � 1 0 ( ω p ( t ) − µ p ) 2 dt. σ 2 µ p = 0 ω p ( t ) dt, = p J. Yang (BUAA/NCSU) ASCM 2012 27 October, 2012 4 / 30

  6. Angular Speed Uniformity Given a parameterization p = ( x, y ) : [0 , 1] → R 2 , let arctan y ′ � , � � θ p = x ′ , ω p = � θ ′ p � 1 � 1 0 ( ω p ( t ) − µ p ) 2 dt. σ 2 µ p = 0 ω p ( t ) dt, = p Definition (Angular Speed Uniformity) The angular speed uniformity u p of a parameterization p is defined as 1 u p = 1 + σ 2 p /µ 2 p when µ p � = 0 . Otherwise, u p = 1 . J. Yang (BUAA/NCSU) ASCM 2012 27 October, 2012 4 / 30

  7. Angular Speed Uniformity � 1 � = | x ′ y ′′ − x ′′ y ′ | 1 ( ω p ( t ) − µ p ) 2 dt, σ 2 � � θ ′ � ω p = , p = u p = x ′ 2 + y ′ 2 p 1 + σ 2 p /µ 2 0 p u p ∈ (0 , 1] ; When u p = 1 , ω p is uniform; ω p = κ · ν , where κ is the curvature and ν is the speed at a point; u p measures the goodness of a parameterization p . J. Yang (BUAA/NCSU) ASCM 2012 27 October, 2012 5 / 30

  8. Examples: Angular Speed Uniformity “Bad” “Good” u p 1 ≈ 0 . 482 u p 2 ≈ 0 . 977 J. Yang (BUAA/NCSU) ASCM 2012 27 October, 2012 6 / 30

  9. Arc-angle Parameterization Definition (Arc-angle Parameterization) If u p = 1 , then p is called a uniform parameterization or an arc-angle parameterization . J. Yang (BUAA/NCSU) ASCM 2012 27 October, 2012 7 / 30

  10. Arc-angle Parameterization Definition (Arc-angle Parameterization) If u p = 1 , then p is called a uniform parameterization or an arc-angle parameterization . Example The parameterization p = (cos t, sin t ) is an arc-angle parameterization since u p = 1 . J. Yang (BUAA/NCSU) ASCM 2012 27 October, 2012 7 / 30

  11. Arc-angle Reparameterization Question How to compute an arc-angle reparameterization p ∗ if p is not an arc-angle one? J. Yang (BUAA/NCSU) ASCM 2012 27 October, 2012 8 / 30

  12. Arc-angle Reparameterization Question How to compute an arc-angle reparameterization p ∗ if p is not an arc-angle one? Theorem Let � t ψ p ( t ) = 1 ω p ( t ) dt µ p 0 and r p = ψ − 1 p , then u p ◦ r p = 1 , i.e. p ◦ r p is an arc-angle reparameteriza- tion of p . Such r p is called a uniformizing parameter transformation . J. Yang (BUAA/NCSU) ASCM 2012 27 October, 2012 8 / 30

  13. Rational Approximation of Arc-angle Reparameterization Q: Is arc-angle parameterization rational? A: The answer is “No” except for straight lines. J. Yang (BUAA/NCSU) ASCM 2012 27 October, 2012 9 / 30

  14. Rational Approximation of Arc-angle Reparameterization Q: Is arc-angle parameterization rational? A: The answer is “No” except for straight lines. Problem p ∈ Q ( t ) 2 Given: a rational p ∗ such that u p ∗ ≈ 1 or equivalently a rational r such Find: that u p ◦ r ≈ 1 J. Yang (BUAA/NCSU) ASCM 2012 27 October, 2012 9 / 30

  15. Rational Approximation of Arc-angle Reparameterization Q: Is arc-angle parameterization rational? A: The answer is “No” except for straight lines. Problem p ∈ Q ( t ) 2 Given: a rational p ∗ such that u p ∗ ≈ 1 or equivalently a rational r such Find: that u p ◦ r ≈ 1 Two Approaches One-piece rational functions of high degree e.g. Weierstrass approximation Piecewise rational functions of low degree obius transformation ✔ e.g. Piecewise M¨ J. Yang (BUAA/NCSU) ASCM 2012 27 October, 2012 9 / 30

  16. Piecewise M¨ obius Transformation Notation Let T = ( t 0 , . . . , t N ) , S = ( s 0 . . . , s N ) , α = ( α 0 , . . . , α N − 1 ) where 0 = t 0 < · · · < t N = 1 , 0 = s 0 < · · · < s N = 1 , and 0 < α 0 , . . . , α N − 1 < 1 . J. Yang (BUAA/NCSU) ASCM 2012 27 October, 2012 10 / 30

  17. Piecewise M¨ obius Transformation Notation Let T = ( t 0 , . . . , t N ) , S = ( s 0 . . . , s N ) , α = ( α 0 , . . . , α N − 1 ) where 0 = t 0 < · · · < t N = 1 , 0 = s 0 < · · · < s N = 1 , and 0 < α 0 , . . . , α N − 1 < 1 . Definition (Piecewise M¨ obius Transformation) A map m is called a piecewise M¨ obius transformation if  . . .    m ( s ) = m i ( s ) , if s ∈ [ s i , s i +1 ]; .  .  .  where (1 − α i )˜ s m i ( s ) = t i + ∆ t i (1 − α i )˜ s + (1 − ˜ s ) α i and ∆ t i = t i +1 − t i , ∆ s i = s i +1 − s i , ˜ s = ( s − s i ) / ∆ s i . J. Yang (BUAA/NCSU) ASCM 2012 27 October, 2012 10 / 30

  18. Remarks m ( s ) is C 0 continuous and thus called C 0 piecewise M¨ obius trans- formation . When N = 1 , it degenerates to an α -M¨ obius transformation. If m satisfies m ′ i ( s i +1 ) = m ′ i +1 ( s i +1 ) , it becomes a C 1 piecewise M¨ obius transformation. Different choices of T, S, α produce different m ( s ) . Thus m is represented as ( T, S, α ) . J. Yang (BUAA/NCSU) ASCM 2012 27 October, 2012 11 / 30

  19. Rational Approximation of Arc-angle Reparameterization Sub-Problem A p ∈ Q ( t ) 2 which is not a straight line, Given: N the number of pieces a C 0 N -piecewise M¨ Find: obius transformation m such that u p ◦ m is optimal J. Yang (BUAA/NCSU) ASCM 2012 27 October, 2012 12 / 30

  20. Rational Approximation of Arc-angle Reparameterization Sub-Problem A p ∈ Q ( t ) 2 which is not a straight line, Given: N the number of pieces a C 0 N -piecewise M¨ Find: obius transformation m such that u p ◦ m is optimal Sub-Problem B p ∈ Q ( t ) 2 which is not a straight line, Given: u an object uniformity ¯ a C 1 piecewise M¨ Find: obius transformation m such that u p ◦ m is close to ¯ u J. Yang (BUAA/NCSU) ASCM 2012 27 October, 2012 12 / 30

  21. Rational Approximation of Arc-angle Reparameterization Sub-Problem A p ∈ Q ( t ) 2 which is not a straight line, Given: N the number of pieces a C 0 N -piecewise M¨ Find: obius transformation m such that u p ◦ m is optimal Sub-Problem B p ∈ Q ( t ) 2 which is not a straight line, Given: u an object uniformity ¯ a C 1 piecewise M¨ Find: obius transformation m such that u p ◦ m is close to ¯ u Assumption: the angular speed ω p is nonzero over [0 , 1] J. Yang (BUAA/NCSU) ASCM 2012 27 October, 2012 12 / 30

  22. Outline Problem 1 Methods 2 Implementation 3 Examples and Experiments 4 Summary 5 J. Yang (BUAA/NCSU) ASCM 2012 27 October, 2012 13 / 30

  23. State of Art Yang, Wang, and Hong: Improving angular speed uniformity by reparameterization (revised version under review) Yang, Wang, and Hong: Improving angular speed uniformity by optimal C 0 piecewise reparameterization, CASC 2012 Yang, Wang, and Hong: Improving angular speed uniformity by C 1 piecewise reparameterization, ADG 2012 J. Yang (BUAA/NCSU) ASCM 2012 27 October, 2012 14 / 30

  24. C 0 Piecewise Reparameterization Let T be an arbitrary but fixed sequence. Then the globally optimal α and S are computed by √ M k � i − 1 1 k =0 α i = ( α i ) T = and s i = ( s i ) T = √ M k , � N − 1 � 1 + C i /A i k =0 where � t i +1 � t i +1 t ) 2 dt, ω 2 p ( t ) · (1 − ˜ ω 2 p ( t ) · 2 ˜ t (1 − ˜ A i = B i = t ) dt, t i t i � t i +1 � � t 2 dt, ω 2 p ( t ) · ˜ � C i = M k = ∆ t k 2 A k C k + B k , t i ˜ t = ( t − t i ) / ∆ t i . J. Yang (BUAA/NCSU) ASCM 2012 27 October, 2012 15 / 30

  25. C 0 Piecewise Reparameterization Let T be an arbitrary but fixed sequence and m T denote the optimal transformation. Then N − 1 u p ◦ m T = µ 2 � p � � � � , where φ p = ∆ t i 2 A i C i + B i . φ 2 p i =0 J. Yang (BUAA/NCSU) ASCM 2012 27 October, 2012 16 / 30

  26. C 0 Piecewise Reparameterization Let T be an arbitrary but fixed sequence and m T denote the optimal transformation. Then N − 1 u p ◦ m T = µ 2 � p � � � � , where φ p = ∆ t i 2 A i C i + B i . φ 2 p i =0 ⇔ max u p ◦ m T min φ p s.t. 0 < t 1 < · · · < t N − 1 < 1 s.t. 0 < t 1 < · · · < t N − 1 < 1 J. Yang (BUAA/NCSU) ASCM 2012 27 October, 2012 16 / 30

  27. C 0 Piecewise Reparameterization Let T be an arbitrary but fixed sequence and m T denote the optimal transformation. Then N − 1 u p ◦ m T = µ 2 � p � � � � , where φ p = ∆ t i 2 A i C i + B i . φ 2 p i =0 ⇔ max u p ◦ m T min φ p s.t. 0 < t 1 < · · · < t N − 1 < 1 s.t. 0 < t 1 < · · · < t N − 1 < 1 ⇑ Zoutendijk’s method of feasible directions J. Yang (BUAA/NCSU) ASCM 2012 27 October, 2012 16 / 30

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend