impact analysis of different scheduling and
play

Impact Analysis of Different Scheduling and Retransmission - PowerPoint PPT Presentation

Impact Analysis of Different Scheduling and Retransmission Techniques on an Underwater Routing Protocol Salvador Climent 1 Nirvana Meratnia 2 Juan Vicente Capella 1 1 Universitat Politcnica de Valncia 2 University of Twente Workshop on


  1. Impact Analysis of Different Scheduling and Retransmission Techniques on an Underwater Routing Protocol Salvador Climent 1 Nirvana Meratnia 2 Juan Vicente Capella 1 1 Universitat Politècnica de València 2 University of Twente Workshop on UnderWater Networks, 2011 Climent, Meratnia, Capella (UPV and UT) WUWNet 2011 1 / 34

  2. Outline Underwater Transmission Problems 1 Contributions 2 Routing protocol: EDETA 3 Scheduling and Retransmission Techniques 4 Combination of scheduling and retransmission techniques used Performance evaluation 5 Simulation configuration Simulation results Conclusions and Future work 6 Climent, Meratnia, Capella (UPV and UT) WUWNet 2011 2 / 34

  3. Outline Underwater Transmission Problems 1 Contributions 2 Routing protocol: EDETA 3 Scheduling and Retransmission Techniques 4 Combination of scheduling and retransmission techniques used Performance evaluation 5 Simulation configuration Simulation results Conclusions and Future work 6 Climent, Meratnia, Capella (UPV and UT) WUWNet 2011 3 / 34

  4. Underwater Transmission Problems Differences between WSNs and UWSNs make current protocols developed for WSNs unsuitable or inefficient for UWSNs. Climent, Meratnia, Capella (UPV and UT) WUWNet 2011 4 / 34

  5. Underwater Transmission Problems Different signal attenuation depending on distance and frequency. Signal spreading proportional to the distance. Long propagation delay. Climent, Meratnia, Capella (UPV and UT) WUWNet 2011 5 / 34

  6. Underwater Transmission Problems Given the long propagation delay: TDMA and CSMA might not perform well. An schedule algorithm can avoid collisions and overlap transmissions. Climent, Meratnia, Capella (UPV and UT) WUWNet 2011 6 / 34

  7. Outline Underwater Transmission Problems 1 Contributions 2 Routing protocol: EDETA 3 Scheduling and Retransmission Techniques 4 Combination of scheduling and retransmission techniques used Performance evaluation 5 Simulation configuration Simulation results Conclusions and Future work 6 Climent, Meratnia, Capella (UPV and UT) WUWNet 2011 7 / 34

  8. Contributions Analyze performance of different delay-aware and non-delay aware scheduling techniques. Combine them with simple retransmission techniques. The analysis is done using a routing protocol named EDETA. Climent, Meratnia, Capella (UPV and UT) WUWNet 2011 8 / 34

  9. Outline Underwater Transmission Problems 1 Contributions 2 Routing protocol: EDETA 3 Scheduling and Retransmission Techniques 4 Combination of scheduling and retransmission techniques used Performance evaluation 5 Simulation configuration Simulation results Conclusions and Future work 6 Climent, Meratnia, Capella (UPV and UT) WUWNet 2011 9 / 34

  10. EDETA Hierarchical protocol Nodes arrange themselves in clusters. The cluster-heads (CHs) are know a priori. CHs arrange themselves in a tree structure with the sink as root. Climent, Meratnia, Capella (UPV and UT) WUWNet 2011 10 / 34

  11. EDETA Corporative network Sink node Clusterhead node Normal node Climent, Meratnia, Capella (UPV and UT) WUWNet 2011 11 / 34

  12. Outline Underwater Transmission Problems 1 Contributions 2 Routing protocol: EDETA 3 Scheduling and Retransmission Techniques 4 Combination of scheduling and retransmission techniques used Performance evaluation 5 Simulation configuration Simulation results Conclusions and Future work 6 Climent, Meratnia, Capella (UPV and UT) WUWNet 2011 12 / 34

  13. Scheduling advantages Scheduling allows to avoid collisions and can overlap transmissions which can reduce the energy consumption and the delays. There should be an extra time for retransmission in case of packet errors. Climent, Meratnia, Capella (UPV and UT) WUWNet 2011 13 / 34

  14. Delay-aware schedule The delay between a node and its CH is estimated at the configuration phase. The delay between a CH and its parent is estimated at the configuration phase. The schedule is done taking into account these delays. Climent, Meratnia, Capella (UPV and UT) WUWNet 2011 14 / 34

  15. Delay-aware schedule Based on scheduling constrains from: W. A. P. van Kleunen et al. MAC Scheduling in Large-scale Underwater Acoustic Networks . 8th International Joint Conference on e-Business and Telecommunication, ICETE 2011. W. A. P. van Kleunen et al. A Set of Simplified Scheduling Constraints for Underwater Acoustic MAC Scheduling . The 3rd International Workshop on Underwater Networks, WUnderNet-2011. Climent, Meratnia, Capella (UPV and UT) WUWNet 2011 15 / 34

  16. TAck TDMA schedule with acknowledgement. Slots have to include the maximum propagation time. Each transmission is scheduled two times. Main Tx Backup Tx Data Ack Data Ack Tx Prop Tx Prop Tx Prop Tx Prop Climent, Meratnia, Capella (UPV and UT) WUWNet 2011 16 / 34

  17. TnoAck TDMA schedule without acknowledgement. Slots have to include the maximum propagation time. There is no backup transmission. Data Data Tx Prop Tx Prop Climent, Meratnia, Capella (UPV and UT) WUWNet 2011 17 / 34

  18. DAck Delay-aware schedule with acknowledgement. Transmissions can be overlapped. Each transmission is scheduled two times. DATA ACK ACK ACK DATA DATA DATA ACK DATA ACK DATA ACK DATA Time Avoid interference with ACK at sender Climent, Meratnia, Capella (UPV and UT) WUWNet 2011 18 / 34

  19. DnoAck Delay-aware schedule without acknowledgement. Transmissions can be overlapped. There is no backup transmission. Receiver Time Climent, Meratnia, Capella (UPV and UT) WUWNet 2011 19 / 34

  20. DnoAck2 Delay-aware schedule without acknowledgement Transmissions can be overlapped. The data is sent twice. DATA DATA DATA DATA DATA DATA DATA DATA Time Climent, Meratnia, Capella (UPV and UT) WUWNet 2011 20 / 34

  21. Outline Underwater Transmission Problems 1 Contributions 2 Routing protocol: EDETA 3 Scheduling and Retransmission Techniques 4 Combination of scheduling and retransmission techniques used Performance evaluation 5 Simulation configuration Simulation results Conclusions and Future work 6 Climent, Meratnia, Capella (UPV and UT) WUWNet 2011 21 / 34

  22. Simulator ns-3 simulator. UAN module for the underwater layer. Climent, Meratnia, Capella (UPV and UT) WUWNet 2011 22 / 34

  23. Scenario configuration Three different deployment areas: ◮ 100 × 100 ◮ 150 × 150 ◮ 200 × 200 Three different node densities: ◮ 50 nodes ◮ 100 nodes ◮ 200 nodes Climent, Meratnia, Capella (UPV and UT) WUWNet 2011 23 / 34

  24. Radio configuration Transmission range of 100 meters. Transmission speed 500 bps. Data sent periodically every 250 seconds. Nodes start with 150 Joules. ◮ Tx: 0 . 203 watts ◮ Rx and Idle: 0 . 024 watts ◮ Sleep: 3 × 10 − 6 watts Climent, Meratnia, Capella (UPV and UT) WUWNet 2011 24 / 34

  25. TnoAck vs DnoAck. Delay Delay heavily influenced by the network topology. Short transmission range: 100 meters Propagation delay is not the dominant factor. 2.5 ¡ 2 ¡ Packet ¡delay ¡(s) ¡ 1.5 ¡ 1 ¡ DnoAck ¡ 0.5 ¡ TnoAck ¡ 0 ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ m m m m m m m m m 0 0 0 0 0 0 0 0 0 0 5 0 0 5 0 0 5 0 1 1 2 1 1 2 1 1 2 n n n n n n n n n 0 0 0 0 0 0 0 0 0 5 5 5 0 0 0 0 0 0 1 1 1 2 2 2 Scenarios ¡ Climent, Meratnia, Capella (UPV and UT) WUWNet 2011 25 / 34

  26. TnoAck vs DnoAck. Energy Same energy consumption for the leaf nodes CHs using delay-aware schedule have less energy consumption. 105 ¡ 300 ¡ 250 ¡ 100 ¡ 200 ¡ Energy ¡(J) ¡ Energy ¡(J) ¡ 95 ¡ 150 ¡ 90 ¡ DnoAck ¡ 100 ¡ DnoAck ¡ 85 ¡ TnoAck ¡ 50 ¡ TnoAck ¡ 80 ¡ 0 ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ m m m m m m m m m m m m m ¡ m ¡ m ¡ m ¡ m ¡ m ¡ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 5 0 0 5 0 0 5 0 0 5 0 0 5 0 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 n n n n n n n n n n n n n n n n n n 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 5 5 0 0 0 0 0 0 5 5 5 0 0 0 0 0 0 1 1 1 2 2 2 1 1 1 2 2 2 Scenario ¡ Scenario ¡ (a) Leaf nodes energy consumption (b) CH nodes energy consumption Climent, Meratnia, Capella (UPV and UT) WUWNet 2011 26 / 34

  27. TAck vs DAck. Delay TDMA delay increases when new control packets are introduced. The delay-aware schedule can optimize and reduce these delays. 14 ¡ 12 ¡ Packet ¡delay ¡(s) ¡ 10 ¡ 8 ¡ 6 ¡ DAck ¡ 4 ¡ TAck ¡ 2 ¡ 0 ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ m m m m m m m m m 0 0 0 0 0 0 0 0 0 0 5 0 0 5 0 0 5 0 1 1 2 1 1 2 1 1 2 n n n n n n n n n 0 0 0 0 0 0 0 0 0 5 5 5 0 0 0 0 0 0 1 1 1 2 2 2 Scenarios ¡ Climent, Meratnia, Capella (UPV and UT) WUWNet 2011 27 / 34

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend