ihp december 2006 1 34 geometric configurations and e 10
play

(IHP-December 2006) 1 / 34 Geometric configurations and E 10 - PowerPoint PPT Presentation

(IHP-December 2006) 1 / 34 Geometric configurations and E 10 subalgebras of cosmological inspiration M. Henneaux, M. Leston, D. Persson, Ph. S. High Energy, Cosmology and Strings Paris, December 12 (IHP-December 2006) 2 / 34 Summary: We


  1. (IHP-December 2006) 1 / 34

  2. Geometric configurations and E 10 subalgebras of cosmological inspiration M. Henneaux, M. Leston, D. Persson, Ph. S. High Energy, Cosmology and Strings Paris, December 12 (IHP-December 2006) 2 / 34

  3. Summary: We re-examine previously found cosmological solutions to eleven-dimensional supergravity in the light of the E 10 -approach to M-theory. We focus on the solutions with non zero electric field determined by geometric configurations ( n m , g 3 ) , n ≤ 10 . We show that these solutions are associated with rank g regular subalgebras of E 10 , the Dynkin diagrams of which are the (line) incidence diagrams of the geometric configurations. Our analysis provides as a byproduct an interesting class of rank-10 Coxeter subgroups of the Weyl group of E 10 . (IHP-December 2006) 3 / 34

  4. Talk based on : J. Demaret, J.-L. Hanquin, M. Henneaux, Ph. S. Cosmological models in Eleven-dimensional Supergravity Nucl. Phus. B 252 , 538 (1985) M. Henneaux, M. Leston, D. Persson, Ph. S. Geometric Configurations, Regular Subalgebras of E 10 and M-Theory Cosmology JHEP 0610 (2006) 021 (hep-th/0606123) M. Henneaux, M. Leston, D. Persson, Ph. S. A special Class of Rank 10 and 11 of Coxeter groups (hep-th/0610278) (IHP-December 2006) 4 / 34

  5. 11 - D, Binachi I supergravity solutions Field configurations − N 2 [ t ] dt 2 + g ij [ t ] dx i dx j ds 2 = F αβγδ = F αβγδ [ t ] Field equations • dynamical equations √ g K a � � d − N √ gF aρστ F bρστ + N √ gF λρστ F λρστ δ a b = b dt 2 144 F 0 abc N √ g � � d 1 144 η 0 abcd 1 d 2 d 3 e 1 e 2 e 3 e 4 F 0 d 1 d 2 d 3 F e 1 e 2 e 3 e 4 = dt dF a 1 a 2 a 3 a 4 = 0 dt (IHP-December 2006) 5 / 34

  6. 11 - D, Binachi I supergravity solutions Field configurations − N 2 [ t ] dt 2 + g ij [ t ] dx i dx j ds 2 = F αβγδ = F αβγδ [ t ] Field equations • dynamical equations √ g K a � � d − N √ gF aρστ F bρστ + N √ gF λρστ F λρστ δ a b = b dt 2 144 F 0 abc N √ g � � d 1 144 η 0 abcd 1 d 2 d 3 e 1 e 2 e 3 e 4 F 0 d 1 d 2 d 3 F e 1 e 2 e 3 e 4 = dt dF a 1 a 2 a 3 a 4 = 0 dt (IHP-December 2006) 5 / 34

  7. • Constraint equations a − K 2 + 1 + 1 48 F abcd F abcd = 0 K a b K b 12 F ⊥ abc F abc Hamiltonian C. ⊥ 1 6 NF 0 bcd F abcd = 0 Momentum C. ε 0 abc 1 c 2 c 3 c 4 d 1 d 2 d 3 d 4 F c 1 c 2 c 3 c 4 F d 1 d 2 d 3 d 4 = 0 Gauss law where K ab = ( − 1 / 2 N )˙ g ab and F ⊥ abc = (1 /N ) F 0 abc . (IHP-December 2006) 6 / 34

  8. Bianchi I configurations Diagonal field configurations Diagonal metric implies diagonal extrinsic curvature K ab Evolution and constraint equations imply diagonal energy-momentum tensor: F aρστ F bρστ ∝ δ a b • Freund-Rubin ansatz: 10=3+7 11 = − N 2 dt 2 + ds 2 ds 2 3 + ds 2 7 F 0 abc ∝ 1 √ gN ε 0 abc ( a, b, c = 1 , 2 , 3) [ P.G.O. Freund, M.A. Rubin, Phys. Lett. 97B (1980) 233 ] • Different splittings: 10 = n + (10 − n ) , n ≥ 0 11 = − N 2 dt 2 + R 2 [ t ] � a ≤ n ( dx a ) 2 + S 2 [ t ] � ds 2 a ≥ n ( dx a ) 2 Only F 0 abc � = 0 (IHP-December 2006) 7 / 34

  9. Einstein-Maxwell equations imply: 1 F 0 abc = E apq E bpq = f 2 δ a N √ gE abc , b • n=1, 2 No non-trivial three-index tensor • n=3 E abc = f ε abc : solution proportional to the Levi-Civita tensor • n=4 Let A a = ε abcd E bcd : A a A b ∝ δ a b i.e. A a = 0 • n=5 Let B ab = ε abcde E cde , B ac B cb ∝ δ a b i.e. B 2 = µ 2 Id in matrix notations, but B is antisymmetric and the dimension odd: B = 0 (IHP-December 2006) 8 / 34

  10. Einstein-Maxwell equations imply: 1 F 0 abc = E apq E bpq = f 2 δ a N √ gE abc , b • n=1, 2 No non-trivial three-index tensor • n=3 E abc = f ε abc : solution proportional to the Levi-Civita tensor • n=4 Let A a = ε abcd E bcd : A a A b ∝ δ a b i.e. A a = 0 • n=5 Let B ab = ε abcde E cde , B ac B cb ∝ δ a b i.e. B 2 = µ 2 Id in matrix notations, but B is antisymmetric and the dimension odd: B = 0 (IHP-December 2006) 8 / 34

  11. Einstein-Maxwell equations imply: 1 F 0 abc = E apq E bpq = f 2 δ a N √ gE abc , b • n=1, 2 No non-trivial three-index tensor • n=3 E abc = f ε abc : solution proportional to the Levi-Civita tensor • n=4 Let A a = ε abcd E bcd : A a A b ∝ δ a b i.e. A a = 0 • n=5 Let B ab = ε abcde E cde , B ac B cb ∝ δ a b i.e. B 2 = µ 2 Id in matrix notations, but B is antisymmetric and the dimension odd: B = 0 (IHP-December 2006) 8 / 34

  12. Einstein-Maxwell equations imply: 1 F 0 abc = E apq E bpq = f 2 δ a N √ gE abc , b • n=1, 2 No non-trivial three-index tensor • n=3 E abc = f ε abc : solution proportional to the Levi-Civita tensor • n=4 Let A a = ε abcd E bcd : A a A b ∝ δ a b i.e. A a = 0 • n=5 Let B ab = ε abcde E cde , B ac B cb ∝ δ a b i.e. B 2 = µ 2 Id in matrix notations, but B is antisymmetric and the dimension odd: B = 0 (IHP-December 2006) 8 / 34

  13. Einstein-Maxwell equations imply: 1 F 0 abc = E apq E bpq = f 2 δ a N √ gE abc , b • n=1, 2 No non-trivial three-index tensor • n=3 E abc = f ε abc : solution proportional to the Levi-Civita tensor • n=4 Let A a = ε abcd E bcd : A a A b ∝ δ a b i.e. A a = 0 • n=5 Let B ab = ε abcde E cde , B ac B cb ∝ δ a b i.e. B 2 = µ 2 Id in matrix notations, but B is antisymmetric and the dimension odd: B = 0 (IHP-December 2006) 8 / 34

  14. In dimensions greater than five Special solutions are obtained by imposing the following conditions: 1 given a pair of indices ( a, b ) , there is at most one c such that E abc � = 0 2 for each index a there are exactly m pairs ( b, c ) such that E abc � = 0 , 3 all non-vanishing E abc are equal up to sign : E abc = ± h Condition 1 implies E apq E bpq = 0 when a � = b ; conditions 2 and 3 imply E apq E bpq = mh 2 δ a b (IHP-December 2006) 9 / 34

  15. Geometric configurations Incidence rules The first two conditions can be reformulated in terms of geometric configurations ( n m , g 3 ) i.e. set of n points with g distinguished subsets, called lines, such that 0 Each line contains exactly three points and defines an E abc component 1 Two points determine at most one line (condition 1) 2 Each point belongs to m lines (condition 2) [ S. Kantor, “Die configurationen (3 , 3) 10 ”, K. Academie der Wissenschaften, Vienna, Sitzungsbereichte der matematisch naturewissenshaftlichen classe, 84 II, 1291-1314 (1881). D. Hilbert and S. Cohn-Vossen, “Geometry and the Imagination”,(Chelsea, New York, 1952) W. Page and H. L. Dorwart, “Numerical Patterns and Geometrical Configurations”, Mathematics Magazine 57 , No. 2, 82-92 (1984). ] (IHP-December 2006) 10 / 34

  16. Geometric configurations Incidence rules The first two conditions can be reformulated in terms of geometric configurations ( n m , g 3 ) i.e. set of n points with g distinguished subsets, called lines, such that 0 Each line contains exactly three points and defines an E abc component 1 Two points determine at most one line (condition 1) 2 Each point belongs to m lines (condition 2) [ S. Kantor, “Die configurationen (3 , 3) 10 ”, K. Academie der Wissenschaften, Vienna, Sitzungsbereichte der matematisch naturewissenshaftlichen classe, 84 II, 1291-1314 (1881). D. Hilbert and S. Cohn-Vossen, “Geometry and the Imagination”,(Chelsea, New York, 1952) W. Page and H. L. Dorwart, “Numerical Patterns and Geometrical Configurations”, Mathematics Magazine 57 , No. 2, 82-92 (1984). ] (IHP-December 2006) 10 / 34

  17. Geometric configurations Some examples 3 1 2 4 2 7 3 4 1 6 5 5 Figure: (7 3 , 7 3 ) : The 6 Fano plane; the Figure: (6 2 , 4 3 ) : The first multiplication table of configuration with intersecting lines. the octonions. (IHP-December 2006) 11 / 34

  18. Geometric configurations Two other examples 1 2 3 7 (9) 1 9 (5) 3 2 (1) (7) 5 4 6 10 (3) (4) 6 (2) (10) 4 (6) 5 (8) 7 8 9 8 Figure: (9 3 , 9 3 ) 1 : The so-called Figure: (10 3 , 10 3 ) 3 : The Pappus configuration . Desargues configuration, dual to the Petersen graph. (IHP-December 2006) 12 / 34

  19. The “symmetric space” E 10 / K ( E 10 ) Definitions • The Kac-Moody algebra : E 10 10 6 9 8 7 5 4 3 2 1 Figure: The Dynkin diagram of E 10 . Labels i = 1 , . . . , 9 enumerate the nodes corresponding to simple roots, α i , of the A 9 subalgebra and the exceptional node, labeled “ 10 ”, is associated to the root α 10 that defines the level decomposition. [ h i , h j ] = 0 , [ h i , e j ] = A ij e j , [ h i , f j ] = − A ij f j , [ e i , f j ] = δ ij h j ( ad e i ) (1 − A ij ) e j = 0 ( ad f i ) (1 − A ij ) f j = 0 , . [ V. Kac, “Infinite dimensional Lie algebras”, 3rd Ed., Cambridge University Press (1990). ] (IHP-December 2006) 13 / 34

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend