i time resolution of a mcp pmt and ii test infrastructure
play

I. Time Resolution of a MCP-PMT and II. Test Infrastructure in the - PowerPoint PPT Presentation

I. Time Resolution of a MCP-PMT and II. Test Infrastructure in the Solid State Detector Lab M. Centis Vignali 1 Representing: CEA (Saclay), CERN, NSRC Demokritos, Princeton University, Thessaloniki University, USTC (Hefei) 22.02.2017


  1. I. Time Resolution of a MCP-PMT and II. Test Infrastructure in the Solid State Detector Lab M. Centis Vignali 1 Representing: CEA (Saclay), CERN, NSRC “Demokritos”, Princeton University, Thessaloniki University, USTC (Hefei) 22.02.2017 RD51 Precise Timing Workshop, CERN 1 matteo.centis.vignali@cern.ch 1 / 28

  2. The RD51 PICOSEC collaboration Fast Timing for High-Rate Environments: A Micromegas Solution Institutes: CEA (Saclay) : T. Papaevangelou, I. Giomataris, M. Kebbiri CERN : L. Ropelewski, E. Oliveri, F . Resnati, R. Veenhof, S. White, H. Muller, F . Brunbauer, J. Bortfeldt, M. van Stenis, M. Lupberger, T. Schneider, C. David, D. Gonzalez Diaz 2 NCSR Demokritos : G. Fanourakis Princeton University : S. White, K.T. McDonald, Changguo Lu University of Thessaloniki : S. Tzamarias University of Science and Technology of China : Yi Zhou, Zhiyong Zhang, Jianbei Liu Contributing from the RD50 collaboration: CERN : M. Centis Vignali, M. Moll, and the SSD lab group (EP-DT-DD) 2Present Institute: University of Santiago de Compostela 2 / 28

  3. I. Time Resolution of a MCP-PMT 3 / 28

  4. Timing σ 2 ∆ t = σ 2 t 1 + σ 2 σ 2 t = σ 2 J + σ 2 ∆ t = t 2 − t 1 TW + ... t 2 Jitter Time walk The noise influences the time at Variations in the amplitude which the threshold is crossed influence the time at which the σ J = σ n / dV threshold is crossed dt Countermeasures: Countermeasures: Algorithm e.g. CFD Reduce rise time Improve noise figure 4 / 28

  5. MCP-PMT Microchannel plate photomultipliers MPC as amplification structure Million of microglass Hamamatsu PMT handbook, chapter 10 tubes fused in parallel 1 − 3 plates in one PMT Channel diameter 6-20 µ m V bias ≈ 3000 V Gain 10 4 − 10 6 5 / 28

  6. Beam Test Performed by the PICOSEC group of the RD51 collaboration CERN SPS Fall 2016 Several timing detectors Gas detectors Silicon detectors MCP-PMT used as time reference Analysis of a special run to characterize the timing reference 6 / 28

  7. Beam Test Setup 150 GeV/c muons 2 MCP-PMTs ( ˇ C light) Scope readout Trigger on PMT2 (50 mV thr) MCP-PMTs Hamamatsu R3809U-50/52 3.2 mm quartz window Amplitude [V] 11 mm diameter photocathode 0.4 0.3 Bias 2.8 kV 0.2 Gain ≈ 8 · 10 4 0.1 Scope 0 × − 9 10 − − − − 2 1.5 1 0.5 0 0.5 1 1.5 2 2.5 GHz bandwidth Time [s] 8 bit (LSB 3.5 mV) Thanks to Stefano Mazzoni for lending one of the MCP-PMT 40 GSa/s (25 ps sampling) 7 / 28

  8. Noise and Baseline Noise Baseline Distr of all points with time < -2 ns Mean (evt by evt) of all points with ≈ 1.6 mV for both PMTs time < -2 ns PMT1 PMT1 4 10 6 10 3 10 5 10 2 10 10 4 10 3 10 1 − − − − − − − − 0.02 0.015 0.01 0.005 0 0.005 0.01 0.015 0.02 0.004 0.003 0.002 0.001 0 0.001 0.002 0.003 0.004 Amplitude [V] Baseline [V] Amplitude [V] 0.4 0.3 0.2 0.1 0 × − 9 10 − − − 6 4 2 0 2 4 6 Time [s] 8 / 28

  9. Event Selection From run using a 5 × 5 mm 2 Max ampli distribution trigger scintillator: PMT1, PMT2 Max ampli 1 > 200 mV 4 10 Max ampli 2 > 120 mV 3 10 Max using parabolic 2 10 interpolation 10 Max measured from baseline 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Amplitude [V] Amplitude [V] Components: 0.4 Poisson distribution of number of 0.3 0.2 photoelectrons 0.1 Partial collection of ˇ C light 0 − × 9 10 − − − 6 4 2 0 2 4 6 Time [s] 9 / 28

  10. Data Interpolation Signal sampled every 25 ps Linear interpolation of 2 points to determine crossing time 10 / 28

  11. Rise Time 20% 80% Correlation rise time amplitude PMT1 Average rise time 116 ps (no amplitude cuts) PMT1, PMT2 − × 9 10 1 Rise time [s] 6000 0.9 5000 5000 0.8 4000 0.7 4000 0.6 3000 0.5 3000 0.4 2000 2000 0.3 0.2 1000 1000 0.1 − × 9 10 0 0 0 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Rise time [s] Amplitude [V] Same rise time for both PMTs Rise time independent of amplitude Amplitude [V] 0.4 0.3 0.2 0.1 0 − × 9 10 − − − 6 4 2 0 2 4 6 Time [s] 11 / 28

  12. Timing using Leading Edge Discriminator Resolution → std dev of ∆ t = t 2 − t 1 Resolution map Diagonal of the 2d plot × − 12 × − 10 12 10 0.11 38 Thr 2 [V] t [s] t [s] 0.1 35 ∆ ∆ 36 Std Dev Std Dev 0.09 30 34 0.08 25 0.07 32 20 0.06 30 0.05 15 0.04 28 10 0.03 26 5 0.02 0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 Thr 1 [V] Thr [V] ∆ t distribution, thr = 30 mV Max ampli at least 5% higher σ σ ± ± = 24.02 = 24.02 0.30 ps, 9855 events 0.30 ps, 9855 events than thr 600 500 400 300 200 100 × − 9 10 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 ∆ t [s] 12 / 28

  13. Timing using Constant Fraction Discriminator Resolution → std dev of ∆ t = t 2 − t 1 Resolution map Diagonal of the 2d plot × − 12 × − 10 12 10 CFD frac 2 t [s] t [s] 24 0.9 14 ∆ ∆ Std Dev Std Dev 0.8 22 12 0.7 20 10 0.6 18 8 0.5 16 0.4 6 14 0.3 4 12 0.2 10 2 0.1 8 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 CFD frac 1 CFD frac ∆ t distribution, CF = 0.45 Reduction of time walk σ σ ± ± = 7.66 = 7.66 0.22 ps, 9855 events 0.22 ps, 9855 events 2000 1800 1600 1400 1200 1000 800 600 400 200 × − 9 10 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 ∆ t [s] 13 / 28

  14. Timing as a Function of Amplitude Resolution → std dev of ∆ t = t 2 − t 1 Resolution map Diagonal of the 2d plot − × 12 × − 10 10 12 0.8 20 20 Amplitude 2 [V] t [s] t [s] 18 18 0.7 ∆ ∆ Std Dev Std Dev 16 16 0.6 14 14 0.5 12 12 0.4 10 10 8 8 0.3 6 6 0.2 4 4 0.1 2 2 0 0 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Amplitude 1 [V] Amplitude [V] CFD with CF = 0.45 The resolution improves with amplitude No amplitude cuts “Holes” due to low statistics 14 / 28

  15. Transit Time Spread for MCP-PMT √ σ TTS ∝ TTS / N N → number of photoelectrons � ⇒ σ TTS N 1 + 1 1 ∝ ∆ t N 2 Conversion coeff to number of photons from a different run × − 12 10 20 t [s] 18 ∆ Std Dev 16 14 12 10 8 6 4 Variations in the time it takes for an 2 0 electron to move from the 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1/N1 + 1/N2 photocathode to the MCP Outliers probably due to low statistics 15 / 28

  16. Leading Edge Interpolation Linear interpolation of points between 20% and 80% of ampli LED thr = 30 mV CFD CF = 0.45 σ σ ± ± σ σ ± ± = 13.61 = 13.61 0.21 ps, 9855 events 0.21 ps, 9855 events = 7.78 = 7.78 0.22 ps, 9855 events 0.22 ps, 9855 events 1000 2000 1800 800 1600 1400 600 1200 1000 400 800 600 200 400 200 × − − 9 × 9 10 10 0 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 ∆ t [s] ∆ t [s] Std dev 2 pt interpolation: 24.0 ps Std dev 2 pt interpolation: 7.7 ps LED more affected than CFD due to different thr 16 / 28

  17. Leading Edge Interpolation Linear interpolation of points between 20% and 80% of ampli LED thr = 30 mV Extrapolation to 0 of interpolation σ σ ± ± = 13.61 = 13.61 0.21 ps, 9855 events 0.21 ps, 9855 events σ σ ± ± = 9.73 = 9.73 0.38 ps, 9855 events 0.38 ps, 9855 events 1000 1800 1600 800 1400 1200 600 1000 400 800 600 200 400 200 × − 9 10 − 0 × 9 10 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 ∆ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 t [s] ∆ t [s] Std dev 2 pt interpolation: 24.0 ps Improvement wrt LED due to partial time walk correction 17 / 28

  18. II. Test Infrastructure in the Solid State Detector Lab 18 / 28

  19. Silicon Detectors Solid state ionization detector Mono-crystalline Si Rectifying junction in reverse bias Mean ionization energy: 3.6 eV/eh Typical thickness, 300 µ m typical Signal ≈ 24000 e − in 300 µ m Fast signals, O(10 ns) 19 / 28

  20. Transient Current Technique (TCT) Measure i ( t ) to investigate sensor’s electric field and charge collection i ind = n · q 0 · v · E W = nq 0 µ E E W = 1 / d v = µ · E d Produce eh pairs using a pulsed laser Red laser → short absorption depth (few µ m) → one type of charge carriers drifts Infrared laser → long absorption depth ( ≈ mm) → similar to charged particle signal Read out the signal using an oscilloscope 20 / 28

  21. TCT Example (Non-irradiated Diode) Holes drift (red top) Electrons drift (red bottom) 21 / 28

  22. Edge TCT Drift velocity profile for an irradiated detector ( Φ eq = 5 · 10 15 cm − 2 ) In irradiated sensors trapping of e/h reduces the signal during drift → less signal to study the E field Edge illumination Use the first part of the i ( t ) pulse to extract information Scan the sensor thickness by moving the laser spot From: Investigation of Irradiated Silicon Detectors by Edge-TCT, G. Kramberger et al., IEEE 2010 22 / 28

  23. TCT setup Red (600 nm) and infrared (1064 nm) laser 200 ps pulse Laser focus ≈ 10 µ m Front, back, and edge illumination Current amplifier 2.5 GHz, 20 GSa/s oscilloscope Reference diodes to monitor laser intensity Temperature control Translation stages 23 / 28

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend