hyperbolicity of the layerwise discretized shallow water
play

Hyperbolicity of the Layerwise Discretized Shallow Water equations - PowerPoint PPT Presentation

Hyperbolicity of the Layerwise Discretized Shallow Water equations The bilayer case Martin Parisot - Ange Inria Paris-Rocquencourt in collaboration with Nina Aguillon (P6) Emmanuel Audusse (P13) Edwige Godlewski (P6 - Ange ) and EGRIN - 2 juin


  1. Hyperbolicity of the Layerwise Discretized Shallow Water equations The bilayer case Martin Parisot - Ange Inria Paris-Rocquencourt in collaboration with Nina Aguillon (P6) Emmanuel Audusse (P13) Edwige Godlewski (P6 - Ange ) and EGRIN - 2 juin 2017

  2. Introduction Layerwise Discretized Shallow Water model Layerwise Discretized Shallow Water model: [Audusse, Bristeau, Perthame and Sainte-Marie’11] for i ∈ [ [1 , L ] ]  = [ G ] i + 1 / 2  + ∂ x ( h i u i ) + ∂ y ( h i v i )  ∂ t h i   i − 1 / 2   � � = − gh i ∂ x B + [ uG ] i + 1 / 2 i + g h i u 2 ( SW L ) ∂ t ( h i u i ) + ∂ x 2 h i h + ∂ y ( h i u i v i ) i − 1 / 2    � �  = − gh i ∂ y B + [ vG ] i + 1 / 2  i + g h i v 2  ∂ t ( h i v i ) + ∂ x ( h i v i u i ) 2 h i h + ∂ y i − 1 / 2 � with h i = α i h and α i = 1. i η u 5 ζ 11 / 2 h 5 G 9 / 2 u 4 ζ 9 / 2 h 4 h u ( z ) G 7 / 2 ζ 7 / 2 u 3 h 3 g G 5 / 2 ζ 5 / 2 u 2 h 2 G 3 / 2 ζ 3 / 2 u 1 h 1 B ζ 0 [Audusse, Bristeau, Pelanti and Sainte-Marie’11] with variable density. [Bristeau, Guichard, Di Martino and Sainte-Marie’16] with viscous terms. [Fernandez-Nieto, Parisot, Penel and Sainte-Marie] with non-hydrostatic terms. Martin PARISOT EGRIN 2017 Layerwise Discretized model 2 / 14

  3. Introduction Layerwise Discretized Shallow Water model Layerwise Discretized Shallow Water model: [Audusse, Bristeau, Perthame and Sainte-Marie’11]  + ∂ x ( h 1 u 1 ) = 0 ∂ t h 1   � � 1 + g h 1 u 2 2 h 2 ( SW 1 ) ∂ t ( h 1 u 1 ) + ∂ x = 0 1   ∂ t ( h 1 v 1 ) + ∂ x ( h 1 v 1 u 1 ) = 0 η ζ 3 / 2 u ( z ) h 1 u 1 h g B ζ 0 � � Strictly hyperbolic equations u 1 − gh 1 u 1 + gh 1 u 1 Admissible shock define to ensure the mechanical � � energy dissipation : E = h 1 + g u 2 1 + v 2 2 h 2 2 1 1 �� u 2 � � 1 + v 2 x 1 ≤ 0 ∂ t E + ∂ x + gh 1 h 1 u 1 2 Dambreak SW 1 Martin PARISOT EGRIN 2017 Layerwise Discretized model 2 / 14

  4. Introduction Layerwise Discretized Shallow Water model Layerwise Discretized Shallow Water model: [Audusse, Bristeau, Perthame and Sainte-Marie’11]   + ∂ x ( h 1 u 1 ) + ∂ x ( hu ) = 0 ∂ t h 1 = − G 3 / 2 ∂ t h   � � u 2 � 2 h 2 �       + g u 2 + �   ∂ t h 2 + ∂ x ( h 2 u 2 ) = G 3 / 2 ∂ t ( hu ) + ∂ x h = 0   ( SW 2 )    � �     1 + g  h 1 u 2 u + ∂ x ( � uu ) = 0 h 1 = h 2   ∂ t � ∂ t ( h 1 u 1 ) + ∂ x 2 h 1 h = − u 3 / 2 G 3 / 2 � � u 3 / 2 = u 1 + u 2 ∂ t ( hv ) + ∂ x ( h ( uv + � v )) = 0 ⇔ u � 2 + g h 2 u 2   2 ∂ t ( h 2 u 2 ) + ∂ x 2 h 2 h = u 3 / 2 G 3 / 2     ∂ t � v u ∂ x v + u ∂ x � v = 0 + � v 3 / 2 = v 1 + v 2       u = u 1 + u 2 u = u 2 − u 1 ∂ t ( h 1 v 1 ) + ∂ x ( h 1 v 1 u 1 ) = − v 3 / 2 G 3 / 2 2     �   2 2     v = v 1 + v 2 v = v 2 − v 1 ∂ t ( h 2 v 2 ) + ∂ x ( h 2 v 2 u 2 ) = v 3 / 2 G 3 / 2 � 2 2 η u 2 h 2 u h u ( z ) h g u � G 3 / 2 u 1 h 1 ζ 0 B [Teshukov’07, Richard and Gavrilyuk’12] shear model. [Castro and Lannes’14] with non-hydrostatic terms. Martin PARISOT EGRIN 2017 Layerwise Discretized model 2 / 14

  5. Introduction Layerwise Discretized Shallow Water model Bi-layer model: Full-Euler model:  ∂ t h + ∂ x ( hu ) = 0 ,   � � ��   u 2 + g + ∂ x ( ρ u ) = 0 , ∂ t ρ hu 2 + h    � �  ∂ t ( hu ) + ∂ x 2 h = 0 , �    ρ u 2 + p ∂ t ( ρ u ) + ∂ x = 0 , ∂ t � u + ∂ x ( � uu ) = 0 ,    ∂ t ( ρ e ) + ∂ x (( ρ e + p ) u ) = 0 ,   ∂ t ( hv ) + ∂ x ( h ( uv + � v )) = 0 ,   u �    ∂ t ( ρ v ) + ∂ x ( ρ uv ) = 0 , ∂ t � v u ∂ x v + u ∂ x � v = 0 + � Admissible shock define to ensure Admissible shock define to ensure the entropy dissipation : the mechanical energy dissipation : � v 2 � + g ∂ t η + ∂ x ( η u ) ≤ 0 E = h u 2 + � u 2 + v 2 + � 2 h 2 2 �� � � u 2 + 3 � u 2 + v 2 + � v 2 ≤ 0 ∂ t E + ∂ x + gh hu + hv � v � u 2 1D analogous to the full-Euler equations except at the shock . Martin PARISOT EGRIN 2017 Layerwise Discretized model 3 / 14

  6. Introduction Layerwise Discretized Shallow Water model Bi-layer model: Full-Euler model:  ∂ t h + ∂ x ( hu ) = 0 ,   � � ��   u 2 + g + ∂ x ( ρ u ) = 0 , ∂ t ρ hu 2 + h    � �  ∂ t ( hu ) + ∂ x 2 h = 0 , �    ρ u 2 + p ∂ t ( ρ u ) + ∂ x = 0 , ∂ t � u + ∂ x ( � uu ) = 0 ,    ∂ t ( ρ e ) + ∂ x (( ρ e + p ) u ) = 0 ,   ∂ t ( hv ) + ∂ x ( h ( uv + � v )) = 0 ,   u �    ∂ t ( ρ v ) + ∂ x ( ρ uv ) = 0 , ∂ t � v u ∂ x v + u ∂ x � v = 0 + � Admissible shock define to ensure Admissible shock define to ensure the entropy dissipation : the mechanical energy dissipation : � v 2 � + g ∂ t η + ∂ x ( η u ) ≤ 0 E = h u 2 + � u 2 + v 2 + � 2 h 2 2 �� � � u 2 + 3 � u 2 + v 2 + � v 2 ≤ 0 ∂ t E + ∂ x + gh hu + hv � v � u 2 1D analogous to the full-Euler equations except at the shock . 2D NOT analogous : non-conservative products, coalescence, resonance. Martin PARISOT EGRIN 2017 Layerwise Discretized model 3 / 14

  7. 1D bilayer model Hyperbolicity and waves patterns 1D Bi-layer model:    ∂ t h + ∂ x ( hu ) = 0 ,  h  � � �� u 2 + g hu 2 + h ∂ t ( hu ) + ∂ x = 0 ,   � 2 h We set U = hu   u � ∂ t � u + ∂ x ( � uu ) = 0 , Proposition : hyperbolicity of (1 D − SW 2 ) For physical solution, i.e. h > 0, the 1D bilayer model ( SW 2 ) is strictly hyperbolic . More precisely, the eigenvalues are given by � � u 2 u 2 . gh + 3 � gh + 3 � λ L = u − < λ ∗ = u < λ R = u + In addition, the λ L -wave and the λ R -wave are genuinely nonlinear , whereas the λ ∗ -wave is linearly degenerate . λ L ( U L ) λ L ( U L ∗ ) u ∗ σ R U L U L ∗ U R ∗ U R x Martin PARISOT EGRIN 2017 Layerwise Discretized model 4 / 14

  8. 1D bilayer model The 1D Riemann problem Proposition : admissible shock of (1 D − SW 2 ) We denote by σ k the speed of the λ k -shock. Assuming that the water depth h is positive, the following properties are equivalent: � u 2 � i) The mechanical energy E = g 2 h 2 + h u 2 + � is decreasing through a shock, i.e. 2 �� � � u 2 + 3 � u 2 − σ k [ E ] + + gh hu < 0 . 2 ii) the shock is compressive , i.e. we have � h 2 � � � � hu 2 � � hu 3 � � u 2 � � � h 2 u u 2 u − σ k + > 0 or − σ k + < 0 or − σ k h � + h � > 0 . iii) the Lax entropy condition is satisfied λ L ( U L ∗ ) < σ L < λ L ( U L ) λ R ( U R ) < σ R < λ R ( U R ∗ ) . and Remark : It is NOT a corollary of the classical theorem [Godlewsli, Raviart’96] since the mechanical energy E (acting as the mathematical entropy) is not a convexe function of the conserved variable U . Martin PARISOT EGRIN 2017 Layerwise Discretized model 5 / 14

  9. 1D bilayer model The 1D Riemann problem Theorem : Riemann problem of (1 D − SW 2 ) � u L ) t ∈ R ∗ + × R 2 U L = ( h L , u L , � if x < 0 , Consider the initial condition U (0 , x ) = u R ) t ∈ R ∗ + × R 2 U R = ( h R , u R , � if x ≥ 0 . If the following condition is fulfilled : u R − u L < µ r ( U L ) + µ r ( U R ) with �� � � � u 2 u 2 + gh 1 + 3 � 3 µ r ( U ) = gh + 3 � log u � gh + � gh 3 � u + × R )) 3 to the 1D Riemann problem then there exists a unique selfsimilar solution U ∈ ( L ∞ ( R ∗ ( SW 2 ) satisfying the mechanical energy dissipation . In addition the water depth h is strictly positive for all ( t , x ) ∈ R + × R . h L ∗ p L ∗ = p R ∗ h L Sketch of proof : • Determine the rarefaction and shock curves. 1 u L ∗ = u R ∗ 2 Conclude by monotony. h R h R ∗ Martin PARISOT EGRIN 2017 Layerwise Discretized model 6 / 14

  10. 2D bilayer model Hyperbolicity and waves patterns 2D Bi-layer model:    ∂ t h + ∂ x ( hu ) = 0 , h  � � u 2 � 2 h 2 �  + g   u 2 + �  ∂ t ( hu ) + ∂ x = 0 ,   h hu      u We set V = � ∂ t � u + ∂ x ( � uu ) = 0 ,        hv  ∂ t ( hv ) + ∂ x ( h ( uv + � u � v )) = 0 ,   v � ∂ t � v + � u ∂ x v + u ∂ x � v = 0 , Proposition : hyperbolicity of (2 D − SW 2 ) For physical solution, i.e. h > 0, the 2D bilayer model ( SW 2 ) is hyperbolic . More precisely, the eigenvalues are given by � � u 2 u 2 . λ L = u − gh + 3 � γ L = u −| � u | λ ∗ = u γ R = u +| � u | λ R = u + gh + 3 � < ≤ ≤ < In addition, the λ L -wave and the λ R -wave are genuinely nonlinear , whereas the γ L -wave, λ ∗ -wave and γ R -wave are linearly degenerate . λ L ( V L ) λ L ( V L ∗ ) γ L γ R σ R λ ∗ V L V L 1 V L 2 V R 2 V R 1 V R x Martin PARISOT EGRIN 2017 Layerwise Discretized model 7 / 14

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend