hyper minimization for deterministic weighted tree
play

Hyper-minimization for deterministic weighted tree automata Andreas - PowerPoint PPT Presentation

Hyper-minimization for deterministic weighted tree automata Andreas Maletti and Daniel Quernheim Institute of Computer Science, Universitt Leipzig, Germany maletti@informatik.uni-leipzig.de May 29, 2014 Overview Weighted Tree Language


  1. Hyper-minimization for deterministic weighted tree automata Andreas Maletti and Daniel Quernheim Institute of Computer Science, Universität Leipzig, Germany maletti@informatik.uni-leipzig.de May 29, 2014

  2. Overview Weighted Tree Language ◮ Assigns weight (e.g. a probability) to each tree ◮ Weight drawn from commutative semiring; e.g. ( Q , + , · , 0 , 1 ) A. Maletti and D. Quernheim Hyper-minimization for deterministic WTA 2

  3. Overview Weighted Tree Language ◮ Assigns weight (e.g. a probability) to each tree ◮ Weight drawn from commutative semiring; e.g. ( Q , + , · , 0 , 1 ) Weighted Tree Automaton ◮ Finitely represents weighted tree language ◮ Defines the recognizable weighted tree languages A. Maletti and D. Quernheim Hyper-minimization for deterministic WTA 2

  4. Overview Weighted Tree Language ◮ Assigns weight (e.g. a probability) to each tree ◮ Weight drawn from commutative semiring; e.g. ( Q , + , · , 0 , 1 ) Weighted Tree Automaton ◮ Finitely represents weighted tree language ◮ Defines the recognizable weighted tree languages Application ◮ Re-ranker for parse trees ◮ Representation of parses large models A. Maletti and D. Quernheim Hyper-minimization for deterministic WTA 2

  5. Basics A. Maletti and D. Quernheim Hyper-minimization for deterministic WTA 3

  6. Semiring Definition A commutative semiring is an algebraic structure A = ( A , + , · , 0 , 1 ) ◮ ( A , + , 0 ) commutative monoid ◮ ( A , · , 1 ) commutative monoid ◮ · distributes over + a · ( a 1 + a 2 ) = ( a · a 1 ) + ( a · a 2 ) ◮ 0 · a = 0 for all a ∈ A Examples: ( N , + , · , 0 , 1 ) and ( Q , + , · , 0 , 1 ) A. Maletti and D. Quernheim Hyper-minimization for deterministic WTA 4

  7. Semiring Definition A commutative semiring is an algebraic structure A = ( A , + , · , 0 , 1 ) ◮ ( A , + , 0 ) commutative monoid ◮ ( A , · , 1 ) commutative monoid ◮ · distributes over + a · ( a 1 + a 2 ) = ( a · a 1 ) + ( a · a 2 ) ◮ 0 · a = 0 for all a ∈ A Examples: ( N , + , · , 0 , 1 ) and ( Q , + , · , 0 , 1 ) Definition A commutative semifield is a commutative semiring A = ( A , + , · , 0 , 1 ) ◮ for all a ∈ A \ { 0 } there exists a − 1 ∈ A with a · a − 1 = 1 Example: ( Q , + , · , 0 , 1 ) A. Maletti and D. Quernheim Hyper-minimization for deterministic WTA 4

  8. Syntax Definition Weighted tree automaton (WTA) is tuple ( Q , Σ , A , F , µ ) where ◮ finite set Q states ◮ ranked alphabet Σ input symbols ◮ commutative semiring A = ( A , + , · , 0 , 1 ) weight structure ◮ F ⊆ Q final states A. Maletti and D. Quernheim Hyper-minimization for deterministic WTA 5

  9. Syntax Definition Weighted tree automaton (WTA) is tuple ( Q , Σ , A , F , µ ) where ◮ finite set Q states ◮ ranked alphabet Σ input symbols ◮ commutative semiring A = ( A , + , · , 0 , 1 ) weight structure ◮ F ⊆ Q final states ◮ µ = ( µ k ) k ∈ N with µ k : Σ k → A Q × Q k weighted transitions A. Maletti and D. Quernheim Hyper-minimization for deterministic WTA 5

  10. Syntax Definition Weighted tree automaton (WTA) is tuple ( Q , Σ , A , F , µ ) where ◮ finite set Q states ◮ ranked alphabet Σ input symbols ◮ commutative semiring A = ( A , + , · , 0 , 1 ) weight structure ◮ F ⊆ Q final states ◮ µ = ( µ k ) k ∈ N with µ k : Σ k → A Q × Q k weighted transitions Sample Transition with weight µ k ( σ ) q , q 1 ··· q k q σ q 1 . . . q k A. Maletti and D. Quernheim Hyper-minimization for deterministic WTA 5

  11. Syntax — Illustration Sample Automaton 3 6 f/ 0 . 3 f/ 0 . 5 1 2 4 5 a/ 1 b/ 1 a/ 1 a/ 1 A. Maletti and D. Quernheim Hyper-minimization for deterministic WTA 6

  12. Semantics Definition Let t ∈ T Σ ( Q ) and W = pos ( t ) . ◮ Run on t : map r : W → Q with r ( w ) = t ( w ) if t ( w ) ∈ Q A. Maletti and D. Quernheim Hyper-minimization for deterministic WTA 7

  13. Semantics Definition Let t ∈ T Σ ( Q ) and W = pos ( t ) . ◮ Run on t : map r : W → Q with r ( w ) = t ( w ) if t ( w ) ∈ Q ◮ Weight of r � wt ( r ) = µ k ( t ( w )) r ( w ) , r ( w 1 ) ··· r ( wk ) w ∈ W t ( w ) ∈ Σ A. Maletti and D. Quernheim Hyper-minimization for deterministic WTA 7

  14. Semantics Definition Let t ∈ T Σ ( Q ) and W = pos ( t ) . ◮ Run on t : map r : W → Q with r ( w ) = t ( w ) if t ( w ) ∈ Q ◮ Weight of r � wt ( r ) = µ k ( t ( w )) r ( w ) , r ( w 1 ) ··· r ( wk ) w ∈ W t ( w ) ∈ Σ ◮ Recognized weighted tree language � � M � ( t ) = wt ( r ) r run on t r ( ε ) ∈ F A. Maletti and D. Quernheim Hyper-minimization for deterministic WTA 7

  15. Semantics — Illustration Sample Automaton 3 6 f/ 0 . 3 f/ 0 . 5 1 2 4 5 a/ 1 b/ 1 a/ 1 a/ 1 Sample Runs Input tree: Runs: with weight 0 f 6 a b 1 2 A. Maletti and D. Quernheim Hyper-minimization for deterministic WTA 8

  16. Semantics — Illustration Sample Automaton 3 6 f/ 0 . 3 f/ 0 . 5 1 2 4 5 a/ 1 b/ 1 a/ 1 a/ 1 Sample Runs Input tree: Runs: with weight f f a b a b A. Maletti and D. Quernheim Hyper-minimization for deterministic WTA 8

  17. Semantics — Illustration Sample Automaton 3 6 f/ 0 . 3 f/ 0 . 5 1 2 4 5 a/ 1 b/ 1 a/ 1 a/ 1 Sample Runs Input tree: Runs: with weight 1 f f a b 1 b A. Maletti and D. Quernheim Hyper-minimization for deterministic WTA 8

  18. Semantics — Illustration Sample Automaton 3 6 f/ 0 . 3 f/ 0 . 5 1 2 4 5 a/ 1 b/ 1 a/ 1 a/ 1 Sample Runs Input tree: Runs: with weight 1 f f a b 1 2 A. Maletti and D. Quernheim Hyper-minimization for deterministic WTA 8

  19. Semantics — Illustration Sample Automaton 3 6 f/ 0 . 3 f/ 0 . 5 1 2 4 5 a/ 1 b/ 1 a/ 1 a/ 1 Sample Runs Input tree: Runs: with weight 0 . 3 f 3 a b 1 2 A. Maletti and D. Quernheim Hyper-minimization for deterministic WTA 8

  20. Determinism Definition Deterministic WTA: for every σ ∈ Σ k and w ∈ Q k there exists exactly one q ∈ Q such that µ k ( σ ) q , w � = 0 A. Maletti and D. Quernheim Hyper-minimization for deterministic WTA 9

  21. Determinism Definition Deterministic WTA: for every σ ∈ Σ k and w ∈ Q k there exists exactly one q ∈ Q such that µ k ( σ ) q , w � = 0 Notes ◮ Deterministic WTA does not use addition A. Maletti and D. Quernheim Hyper-minimization for deterministic WTA 9

  22. Determinism Definition Deterministic WTA: for every σ ∈ Σ k and w ∈ Q k there exists exactly one q ∈ Q such that µ k ( σ ) q , w � = 0 Notes ◮ Deterministic WTA does not use addition ◮ Recognizable � = deterministically recognizable A. Maletti and D. Quernheim Hyper-minimization for deterministic WTA 9

  23. Determinism Definition Deterministic WTA: for every σ ∈ Σ k and w ∈ Q k there exists exactly one q ∈ Q such that µ k ( σ ) q , w � = 0 Notes ◮ Deterministic WTA does not use addition ◮ Recognizable � = deterministically recognizable ◮ Determinization possible in locally-finite semirings [Borchardt, Vogler 2003] A. Maletti and D. Quernheim Hyper-minimization for deterministic WTA 9

  24. Determinism Definition Deterministic WTA: for every σ ∈ Σ k and w ∈ Q k there exists exactly one q ∈ Q such that µ k ( σ ) q , w � = 0 Notes ◮ Deterministic WTA does not use addition ◮ Recognizable � = deterministically recognizable ◮ Determinization possible in locally-finite semirings [Borchardt, Vogler 2003] ◮ Partial determinization for probabilities [May, Knight 2006] ◮ Systematic presentation [Büchse, Vogler 2009] A. Maletti and D. Quernheim Hyper-minimization for deterministic WTA 9

  25. Hyper-minimization A. Maletti and D. Quernheim Hyper-minimization for deterministic WTA 10

  26. Assumption We assume a commutative semifield A = ( A , + , · , 0 , 1 ) A. Maletti and D. Quernheim Hyper-minimization for deterministic WTA 11

  27. Minimization equivalent = same recognized weighted tree language Problem Given deterministic WTA, return ◮ equivalent deterministic WTA such that ◮ no equivalent deterministic WTA is smaller A. Maletti and D. Quernheim Hyper-minimization for deterministic WTA 12

  28. Minimization equivalent = same recognized weighted tree language Problem Given deterministic WTA, return ◮ equivalent deterministic WTA ◮ minimal A. Maletti and D. Quernheim Hyper-minimization for deterministic WTA 12

  29. Minimization equivalent = same recognized weighted tree language Problem Given deterministic WTA, return ◮ equivalent deterministic WTA ◮ minimal Theorem (M., Q. 2011) Minimization of deterministic WTA can be done in time O ( m log n ) ◮ m = size of automaton ◮ n = number of states A. Maletti and D. Quernheim Hyper-minimization for deterministic WTA 12

  30. Minimization context = tree with exactly one occurrence of special symbol � c [ t ] = tree obtained from context c by replacing � by t Definition States p and q are equivalent if there exists a ∈ A \ { 0 } such that � M � ( c [ p ]) = a · � M � ( c [ q ]) for all contexts c ∈ C Σ A. Maletti and D. Quernheim Hyper-minimization for deterministic WTA 13

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend