relating tree series transducers and weighted tree
play

Relating Tree Series Transducers and Weighted Tree Automata Andreas - PowerPoint PPT Presentation

Relating Tree Series Transducers and Weighted Tree Automata Andreas Maletti December 17, 2004 1. Motivation and Introductory Example 2. Semirings and DM-Monoids 3. Bottom-Up DM-Monoid Weighted Tree Automata 4. Establishing a Relationship 1


  1. Relating Tree Series Transducers and Weighted Tree Automata Andreas Maletti December 17, 2004 1. Motivation and Introductory Example 2. Semirings and DM-Monoids 3. Bottom-Up DM-Monoid Weighted Tree Automata 4. Establishing a Relationship 1 December 17, 2004

  2. Generalisation Hierarchy tree series transducer τ : T Σ − → A � � T ∆ � � weighted tree weighted transducer tree transducer automaton τ : Σ ∗ − � ∆ ∗ � τ : T Σ − → B � � T ∆ � � → A � � L ∈ A � � T Σ � � generalized weighted automaton tree automaton sequential machine � Σ ∗ � L ∈ B � � T Σ � � L ∈ A � � τ : Σ ∗ − � ∆ ∗ � → B � � string automaton � Σ ∗ � L ∈ B � � Introduction 2 December 17, 2004

  3. Known Relations and Problems • String-based: Theorem: Every gsm-mapping can be computed by a weighted automaton. Proof Idea: Extend monoid (∆ ∗ , ◦ , ε ) to semiring ( P (∆ ∗ ) , ∪ , ◦ , ∅ , { ε } ) Theorem: Weighted transductions can be computed by weighted automata. • Tree-based: Problem: Are tree transductions computable by weighted tree automata ? Problem: Are tree series transformations computable by weighted tree automata ? Introduction 3 December 17, 2004

  4. Tree Pattern Matching A deterministic (bottom-up) tree automaton matching the pattern σ ( α, x ) σ σ σ P σ σ σ α ⊥ σ σ α β If pattern found, accepts tree. Otherwise reject. Introduction 4 December 17, 2004

  5. Extended Tree Pattern Matching Towards a deterministic (bottom-up) weighted tree automaton computing an occurrence of pattern σ ( α, x ) σ/ ? σ/ 1 P σ/ 1 σ/ 2 σ/ 2 σ/ε ⊥ α σ/ε σ/ε α/ε β/ε Introduction 5 December 17, 2004

  6. Extended Tree Pattern Matching A deterministic tree transducer computing the occurrences of pattern σ ( α, x ) σ/ 1 x 1 +2 x 2 P σ/ 1 x 1 σ/ 1 x 1 σ/ε +2 x 2 σ/ 2 x 2 σ/ε ⊥ α σ/ε σ/ε α/ε β/ε Computes the set of occurrences of σ ( α, x ) in input tree. Introduction 6 December 17, 2004

  7. Complete Monoids • A = ( A, � ) complete monoid, iff (C1) � i ∈{ j } a i = a j , (C2) � j ∈ J ( � i ∈ I j a i ) = � i ∈ I a i , if I = � j ∈ J I j is a partition. • A naturally ordered, iff ⊑ is partial order a ⊑ b ⇐ ⇒ ( ∃ c ∈ A ) : a ⊕ c = b • A continuous, iff A naturally ordered and complete and � � a i ⊑ a ⇐ ⇒ a i ⊑ a for all finite E ⊆ I i ∈ I i ∈ E Semirings and DM-Monoids 7 December 17, 2004

  8. Semirings • ( A, ⊕ , ⊙ , 0 , 1 ) semiring, iff (i) ( A, ⊕ , 0 ) commutative monoid, (ii) ( A, ⊙ , 1 ) monoid, (iii) 0 absorbing element with respect to ⊙ , and (iv) ⊙ (left and right) distributes over ⊕ . • ( A, ⊙ , 0 , 1 , � ) complete semiring, iff (S1) ( A, ⊕ , ⊙ , 0 , 1 ) semiring, (S2) ( A, � ) complete monoid, and (S3) a ⊙ ( � i ∈ I a i ) = � i ∈ I ( a ⊙ a i ) and ( � i ∈ I a i ) ⊙ a = � i ∈ I ( a i ⊙ a ) . Semirings and DM-Monoids 8 December 17, 2004

  9. Examples of Semirings • complete natural numbers semiring N ∞ = ( N ∪ {∞} , + , · , 0 , 1) , • tropical semiring Trop = ( N ∪ {∞} , min , + , ∞ , 0) , • Boolean semiring B = ( {⊥ , ⊤} , ∨ , ∧ , ⊥ , ⊤ ) , • formal language semiring Lang Σ = ( P (Σ ∗ ) , ∪ , ◦ , ∅ , { ε } ) Semiring commutative complete naturally ordered continuous yes yes yes yes N ∞ Trop yes yes yes yes yes yes yes yes B Lang Σ NO yes yes yes Semirings and DM-Monoids 9 December 17, 2004

  10. Excursion: Tree Series ( A, � ) complete monoid, Σ ranked alphabet, and X k = { x 1 , . . . , x k } . • Tree series is mapping ψ : T Σ ( X k ) − → A • A � � T Σ ( X k ) � � set of all tree series • Sum ( � i ∈ I ψ i , t ) = � i ∈ I ( ψ i , t ) � , � ) complete monoid • ( A � � T Σ ( X k ) � ( A, ⊙ , 0 , 1 , � ) complete semiring • Tree series substiution of ψ 1 , . . . , ψ k ∈ A � � T Σ � � into ψ ∈ A � � T Σ ( X k ) � � is � � � � ψ ← − ( ψ 1 , . . . , ψ k ) = ( ψ, t ) ⊙ ( ψ i , t i ) t [ t 1 , . . . , t k ] t ∈ T Σ ( X k ) , i ∈ [ k ] ( ∀ i ∈ [ k ]): t i ∈ T Σ Semirings and DM-Monoids 10 December 17, 2004

  11. Complete DM-Monoids ( D, � ) complete monoid, Ω ranked set • ( D, Ω , � ) distributive multi-operator monoid (DM-monoid), iff � � � ω ( d i 1 , . . . , d i k ) = ω ( d i 1 , . . . , d i k ) . i 1 ∈ I 1 i k ∈ I k ( ∀ j ∈ [ k ]): i j ∈ I j Examples: • ( A, ⊙ , � ) complete semiring, Ω ( k ) = { a ( k ) | a ∈ A } with a ( k ) ( d 1 , . . . , d k ) = a ⊙ d 1 ⊙ · · · ⊙ d k Then ( A, Ω , � ) complete DM-monoid • ( A, ⊙ , 0 , 1 , � ) complete semiring, Ω ( k ) = { ψ ( k ) | ψ ∈ A � � T ∆ ( X k ) � � } with ψ ( k ) ( ψ 1 , . . . , ψ k ) = ψ ← − ( ψ 1 , . . . , ψ k ) � , Ω , � ) complete DM-monoid Then ( A � � T ∆ � Semirings and DM-Monoids 11 December 17, 2004

  12. DM-Monoid Weighted Tree Automata — Syntax Σ ranked alphabet, I , Ω non-empty sets • Tree representation over I , Σ , and Ω is µ = ( µ k | k ∈ N ) such that → Ω I × I k µ k : Σ ( k ) − • M = ( I, Σ , D , F, µ ) (bottom-up) DM-monoid weighted tree automaton (DM-wta), iff – I non-empty set of states, – Σ ranked alphabet of input symbols, – D = ( D, Ω , � ) complete DM-monoid , – F : I − → Ω (1) final weight map, and I × I k – µ tree representation over I , Σ , and Ω such that µ k : Σ ( k ) − → Ω ( k ) DM-Monoid Weighted Tree Automata 12 December 17, 2004

  13. DM-Monoid Weighted Tree Automata — Semantics D = ( D, Ω , � ) complete DM-monoid, M = ( I, Σ , D , F, µ ) DM-wta. → D I by • Define h µ : T Σ − � � � h µ ( σ ( t 1 , . . . , t k )) i = µ k ( σ ) i, ( i 1 ,...,i k ) h µ ( t 1 ) i 1 , . . . , h µ ( t k ) i k i 1 ,...,i k ∈ I • ( � M � , t ) = � i ∈ I F i ( h µ ( t ) i ) is tree series recognized by M DM-Monoid Weighted Tree Automata 13 December 17, 2004

  14. Example DM-wta • Σ = { σ, α } and Ω = { ω, id , 1 } and ω ( n 1 , n 2 ) = 1 + max( n 1 , n 2 ) , • N = ( N ∪ {∞} , Ω , min) complete DM-monoid • DM-wta M E = ( { ⋆ } , Σ , N , F, µ ) with F ⋆ = id , µ 0 ( α ) ⋆ = 1 , and µ 2 ( σ ) ⋆, ( ⋆,⋆ ) = ω 1 + max( x 1 , x 2 ) ω σ ⋆ ω 1 1 + max( x 1 , x 2 ) σ α ⋆ ⋆ 1 α σ ω ⋆ ⋆ 1 1 + max( x 1 , x 2 ) 1 α α ⋆ ⋆ 1 1 1 1 • ( � M E � , t ) = height( t ) DM-Monoid Weighted Tree Automata 14 December 17, 2004

  15. Weighted Tree Automata & Tree Series Transducers M = ( I, Σ , D , F, µ ) DM-wta and ( A, ⊙ , 0 , 1 , � ) complete semiring • M is weighted tree automaton (wta), iff D = ( A, Ω , � ) with Ω ( k ) = { a ( k ) | a ∈ A } and a ( k ) ( d 1 , . . . , d k ) = a ⊙ d 1 ⊙ · · · ⊙ d k � , Ω , � ) with • M is tree series transducer (tst), iff D = ( A � � T ∆ � Ω ( k ) = { ψ ( k ) | ψ ∈ A � � T ∆ ( X k ) � � } and ψ ( k ) ( ψ 1 , . . . , ψ k ) = ψ ← − ( ψ 1 , . . . , ψ k ) DM-Monoid Weighted Tree Automata 15 December 17, 2004

  16. Constructing a Monoid (I) ( D, Ω , � ) complete DM-monoid, Ω X = { ω ( x 1 , . . . , x k ) | k ∈ N , ω ∈ Ω ( k ) } Theorem: There exists monoid ( B, ← , ε ) such that D ∪ Ω X ⊆ B and for all d 1 , . . . , d k ∈ D ω ( d 1 , . . . , d k ) = ω ( x 1 , . . . , x k ) ← d 1 ← · · · ← d k . Proof sketch: Let Ω ′ = Ω ∪ D . • Define h : T Ω ′ ( X ) − → T Ω ′ ( X ) for every v ∈ D ∪ X by h ( v ) = v   , if h ( t 1 ) , . . . , h ( t k ) ∈ D ω ( h ( t 1 ) , . . . , h ( t k )) h ( ω ( t 1 , . . . , t k )) =  ω ( h ( t 1 ) , . . . , h ( t k )) , otherwise • � T Ω ′ ( X n ) set of X n -contexts • h ( t ) ∈ � T Ω ′ ( X n ) iff t ∈ � T Ω ′ ( X n ) Establishing a Relationship 16 December 17, 2004

  17. Constructing a Monoid (II) • Let s � t � = s [ t, x k +1 , x k +2 , . . . , x k + n − 1 ] for s ∈ � T Σ ( X n ) and t ∈ � T Σ ( X k ) (non-identifying tree substitution). • B = D ∗ ∪ � + D ∗ · � T Ω ′ ( X n ) . n ∈ N • Define ← : B 2 − → B for every a ∈ D ∗ , b ∈ B , s ∈ � T Ω ′ ( X n ) , t ∈ D ∪ � T Ω ′ ( X n ) by a ← b = a · b a · s ← ε a · s = a · s ← t · b = a · ( h ( s � t � )) ← b. • ( B, ← , ε ) is a monoid. • ω ( d 1 , . . . , d k ) = ω ( x 1 , . . . , x k ) ← d 1 ← · · · ← d k . Establishing a Relationship 17 December 17, 2004

  18. From a Monoid to a Semiring (I) A = ( A, ⊙ , 0 , 1 , � ) complete semiring, DM-monoid ( D, Ω , � ) complete semimodule of A • Lift mapping ← : B 2 − � 2 − → B to a mapping ← : A � � B � → A � � B � � by � � � ψ 1 ← ψ 2 = ( ψ 1 , b 1 ) ⊙ ( ψ 2 , b 2 ) ( b 1 ← b 2 ) . b 1 ,b 2 ∈ B � (summed in D ) by � : A � • Define sum of a series ϕ ∈ A � � D � � D � � − → D � � ϕ = ( ϕ, d ) · d. d ∈ D • Theorem: (i) � ( � i ∈ I ϕ i ) = � � ϕ i for every family ( ϕ i | i ∈ I ) of series and i ∈ I (ii) ω ( � ϕ 1 , . . . , � ϕ k ) = �� � ω ( x 1 , . . . , x k ) ← ϕ 1 ← · · · ← ϕ k . Establishing a Relationship 18 December 17, 2004

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend