hybrid atlas model
play

Hybrid Atlas Model of financial equity market Tomoyuki Ichiba 1 - PowerPoint PPT Presentation

Hybrid Atlas Model of financial equity market Tomoyuki Ichiba 1 Ioannis Karatzas 2 , 3 Adrian Banner 3 Vassilios Papathanakos 3 Robert Fernholz 3 1 University of California, Santa Barbara 2 Columbia University, New York 3 INTECH, Princeton


  1. Hybrid Atlas Model of financial equity market Tomoyuki Ichiba 1 Ioannis Karatzas 2 , 3 Adrian Banner 3 Vassilios Papathanakos 3 Robert Fernholz 3 1 University of California, Santa Barbara 2 Columbia University, New York 3 INTECH, Princeton November 2009 1

  2. Outline Introduction Hybrid Atlas model Martingale Problem Stability Effective dimension Rankings Long-term growth relations Portfolio analysis Stochastic Portfolio Theory Target portfolio Universal portfolio Conclusion 2

  3. Flow of Capital Figure: Capital Distribution Curves (Percentage) for the S&P 500 Index of 1997 (Solid Line) and 1999 (Broken Line). 3

  4. Log-Log Capital Distribution Curves Figure: Capital distribution curves for 1929 (shortest curve) - 1999 (longest curve), every ten years. Source Fernholz(’02). What kind of models can describe this long-term stability? 4

  5. A Model of Rankings [Hybrid Atlas model] ◮ Capital process X := { ( X 1 ( t ) , . . . , X n ( t )) , 0 ≤ t < ∞} . ◮ Order Statistics: X ( 1 ) ( t ) ≥ · · · ≥ X ( n ) ( t ) ; 0 ≤ t < ∞ . Log capital Y := log X : Y ( 1 ) ( t ) ≥ · · · ≥ Y ( n ) ( t ) ; 0 ≤ t < ∞ . Dynamics of log capital: d Y ( k ) ( t ) = ( γ + γ i + g k ) d t + σ k d W i ( t ) if Y ( k ) ( t ) = Y i ( t ) ; for 1 ≤ i , k ≤ n , 0 ≤ t < ∞ , where W ( · ) is n − dim. B. M. company name i k th ranked company ∗ Drift (“mean”) γ i g k Diffusion (“variance”) σ k > 0 ∗ Banner, Fernholz & Karatzas (’05), Chatterjee & Pal (’07, ’09), Pal & Pitman (’08). 5

  6. A Model of Rankings [Hybrid Atlas model] ◮ Capital process X := { ( X 1 ( t ) , . . . , X n ( t )) , 0 ≤ t < ∞} . ◮ Order Statistics: X ( 1 ) ( t ) ≥ · · · ≥ X ( n ) ( t ) ; 0 ≤ t < ∞ . Log capital Y := log X : Y ( 1 ) ( t ) ≥ · · · ≥ Y ( n ) ( t ) ; 0 ≤ t < ∞ . Dynamics of log capital: d Y ( k ) ( t ) = ( γ + γ i + g k ) d t + σ k d W i ( t ) if Y ( k ) ( t ) = Y i ( t ) ; for 1 ≤ i , k ≤ n , 0 ≤ t < ∞ , where W ( · ) is n − dim. B. M. company name i k th ranked company ∗ Drift (“mean”) γ i g k Diffusion (“variance”) σ k > 0 ∗ Banner, Fernholz & Karatzas (’05), Chatterjee & Pal (’07, ’09), Pal & Pitman (’08). 5

  7. A Model of Rankings [Hybrid Atlas model] ◮ Capital process X := { ( X 1 ( t ) , . . . , X n ( t )) , 0 ≤ t < ∞} . ◮ Order Statistics: X ( 1 ) ( t ) ≥ · · · ≥ X ( n ) ( t ) ; 0 ≤ t < ∞ . Log capital Y := log X : Y ( 1 ) ( t ) ≥ · · · ≥ Y ( n ) ( t ) ; 0 ≤ t < ∞ . Dynamics of log capital: d Y ( k ) ( t ) = ( γ + γ i + g k ) d t + σ k d W i ( t ) if Y ( k ) ( t ) = Y i ( t ) ; for 1 ≤ i , k ≤ n , 0 ≤ t < ∞ , where W ( · ) is n − dim. B. M. company name i k th ranked company ∗ Drift (“mean”) γ i g k Diffusion (“variance”) σ k > 0 ∗ Banner, Fernholz & Karatzas (’05), Chatterjee & Pal (’07, ’09), Pal & Pitman (’08). 5

  8. Illustration ( n = 3) of interactions through rank Time X 3 ( t ) > X 1 ( t ) > X 2 ( t ) X 1 ( t ) > X 3 ( t ) > X 2 ( t ) x 1 > x 3 > x 2 x 3 > x 1 > x 2 x 1 > x 2 > x 3 X 1 ( t ) > X 2 ( t ) > X 3 ( t ) x 3 > x 2 > x 1 x 2 > x 1 > x 3 x 2 > x 3 > x 1 X 3 X 2 X 1 A path in different wedges of R n . Paths in R + × Time . Symmetric group Σ n of permutations of { 1 , . . . , n } . For n = 3 , { ( 1 , 2 , 3 ) , ( 1 , 3 , 2 ) , ( 2 , 1 , 3 ) , ( 2 , 3 , 1 ) , ( 3 , 1 , 2 ) , ( 3 , 2 , 1 ) } . 6

  9. Illustration ( n = 3) of interactions through rank Time X 3 ( t ) > X 1 ( t ) > X 2 ( t ) X 1 ( t ) > X 3 ( t ) > X 2 ( t ) x 1 > x 3 > x 2 x 3 > x 1 > x 2 x 1 > x 2 > x 3 X 1 ( t ) > X 2 ( t ) > X 3 ( t ) x 3 > x 2 > x 1 x 2 > x 1 > x 3 x 2 > x 3 > x 1 X 3 X 2 X 1 A path in different wedges of R n . Paths in R + × Time . Symmetric group Σ n of permutations of { 1 , . . . , n } . For n = 3 , { ( 1 , 2 , 3 ) , ( 1 , 3 , 2 ) , ( 2 , 1 , 3 ) , ( 2 , 3 , 1 ) , ( 3 , 1 , 2 ) , ( 3 , 2 , 1 ) } . 6

  10. Vector Representation d Y ( t ) = G ( Y ( t )) d t + S ( Y ( t )) dW ( t ) ; 0 ≤ t < ∞ Σ n : symmetric group of permutations of { 1 , 2 , . . . , n } . For p ∈ Σ n define wedges (chambers) R p := { x ∈ R n : x p ( 1 ) ≥ x p ( 2 ) ≥ · · · ≥ x p ( n ) } , R n = ∪ p ∈ Σ n R p , (the inner points of R p and R p ′ are disjoint for p � = p ′ ∈ Σ n ), : = { x ∈ R n : x i is ranked k th among ( x 1 , . . . , x n ) } Q ( i ) k = ∪ { p : p ( k )= i } R p ; 1 ≤ i , k ≤ n , j = 1 Q ( j ) = R n = ∪ n ℓ = 1 Q ( i ) k = 1 Q ( p ( k )) ∪ n and R p = ∩ n . k ℓ k G ( y ) = � p ∈ Σ n ( g p − 1 ( 1 ) + γ 1 + γ, . . . , g p − 1 ( n ) + γ n + γ ) ′ · 1 R p ( y ) , S ( y ) = � y ∈ R n . p ∈ Σ n diag ( σ p − 1 ( 1 ) , . . . , σ p − 1 ( n ) ) · 1 R p ( y ) ; � �� � s p 7

  11. Vector Representation d Y ( t ) = G ( Y ( t )) d t + S ( Y ( t )) dW ( t ) ; 0 ≤ t < ∞ Σ n : symmetric group of permutations of { 1 , 2 , . . . , n } . For p ∈ Σ n define wedges (chambers) R p := { x ∈ R n : x p ( 1 ) ≥ x p ( 2 ) ≥ · · · ≥ x p ( n ) } , R n = ∪ p ∈ Σ n R p , (the inner points of R p and R p ′ are disjoint for p � = p ′ ∈ Σ n ), : = { x ∈ R n : x i is ranked k th among ( x 1 , . . . , x n ) } Q ( i ) k = ∪ { p : p ( k )= i } R p ; 1 ≤ i , k ≤ n , j = 1 Q ( j ) = R n = ∪ n ℓ = 1 Q ( i ) k = 1 Q ( p ( k )) ∪ n and R p = ∩ n . k ℓ k G ( y ) = � p ∈ Σ n ( g p − 1 ( 1 ) + γ 1 + γ, . . . , g p − 1 ( n ) + γ n + γ ) ′ · 1 R p ( y ) , S ( y ) = � y ∈ R n . p ∈ Σ n diag ( σ p − 1 ( 1 ) , . . . , σ p − 1 ( n ) ) · 1 R p ( y ) ; � �� � s p 7

  12. Martingale Problem Theorem [ Krylov(’71), Stroock & Varadhan(’79) , Bass & Pardoux(’87) ] Suppose that the coefficients G ( · ) and a ( · ) := SS ′ ( · ) are bounded and mea- surable, and that a ( · ) is uniformly positive-definite and piece- For each y 0 ∈ R n there is a wise constant in each wedge. unique one probability measure P on C ([ 0 , ∞ ) , R n ) such that P ( Y 0 = y 0 ) = 1 and � t f ( Y t ) − f ( Y 0 ) − L f ( Y s ) d s ; 0 ≤ t < ∞ 0 is a P local martingale for every f ∈ C 2 ( R 2 ) where � n i , j = 1 a ij ( x ) D ij f ( x ) + � n L f ( x ) = 1 i = 1 G i ( x ) D i f ( x ) ; x ∈ R n . 2 This implies that the hybrid Atlas model is well-defined. 8

  13. Model Market capitalization X follows Hybrid Atlas model: the log capitalization Y i = log X i of company i has drift γ + g k + γ i and volatility σ k , when company i is k th ranked, i.e., Y ∈ Q ( i ) for 1 ≤ k , i ≤ n . k � � n � d Y i ( t ) = γ + g k 1 Q ( i ) k ( Y ( t )) + γ i d t k = 1 n � + σ k 1 Q ( i ) k ( Y ( t )) d W i ( t ) ; 0 ≤ t < ∞ . k = 1 9

  14. Model assumptions Market capitalization X follows Hybrid Atlas model: the log capitalization Y i = log X i of company i has drift γ + g k + γ i and volatility σ k , when company i is k th ranked, i.e., Y ∈ Q ( i ) for 1 ≤ k , i ≤ n . k Assume σ k > 0 , ( g k , 1 ≤ k ≤ n ) , ( γ i , 1 ≤ i ≤ n ) and γ are real constants with stability conditions n n k � � � g k + γ i = 0 , ( g ℓ + γ p ( ℓ ) ) < 0 , k = 1 , . . . , n − 1 , p ∈ Σ n . k = 1 i = 1 ℓ = 1 ◮ γ i = 0 , 1 ≤ i ≤ n , g 1 = · · · = g n − 1 = − g < 0, g n = ( n − 1 ) g > 0 . ◮ γ i = 1 − ( 2 i ) / ( n + 1 ) , 1 ≤ i ≤ n , g k = − 1 , k = 1 , . . . , n − 1 , g n = n − 1 . 10

  15. Model assumptions Market capitalization X follows Hybrid Atlas model: the log capitalization Y i = log X i of company i has drift γ + g k + γ i and volatility σ k , when company i is k th ranked, i.e., Y ∈ Q ( i ) for 1 ≤ k , i ≤ n . k Assume σ k > 0 , ( g k , 1 ≤ k ≤ n ) , ( γ i , 1 ≤ i ≤ n ) and γ are real constants with stability conditions n n k � � � g k + γ i = 0 , ( g ℓ + γ p ( ℓ ) ) < 0 , k = 1 , . . . , n − 1 , p ∈ Σ n . k = 1 i = 1 ℓ = 1 ◮ γ i = 0 , 1 ≤ i ≤ n , g 1 = · · · = g n − 1 = − g < 0, g n = ( n − 1 ) g > 0 . ◮ γ i = 1 − ( 2 i ) / ( n + 1 ) , 1 ≤ i ≤ n , g k = − 1 , k = 1 , . . . , n − 1 , g n = n − 1 . 10

  16. Model assumptions Market capitalization X follows Hybrid Atlas model: the log capitalization Y i = log X i of company i has drift γ + g k + γ i and volatility σ k , when company i is k th ranked, i.e., Y ∈ Q ( i ) for 1 ≤ k , i ≤ n . k Assume σ k > 0 , ( g k , 1 ≤ k ≤ n ) , ( γ i , 1 ≤ i ≤ n ) and γ are real constants with stability conditions n n k � � � g k + γ i = 0 , ( g ℓ + γ p ( ℓ ) ) < 0 , k = 1 , . . . , n − 1 , p ∈ Σ n . k = 1 i = 1 ℓ = 1 ◮ γ i = 0 , 1 ≤ i ≤ n , g 1 = · · · = g n − 1 = − g < 0, g n = ( n − 1 ) g > 0 . ◮ γ i = 1 − ( 2 i ) / ( n + 1 ) , 1 ≤ i ≤ n , g k = − 1 , k = 1 , . . . , n − 1 , g n = n − 1 . 10

  17. Model Summary The log-capitalization Y = log X follows � � n � d Y i ( t ) = γ + g k 1 Q ( i ) k ( Y ( t )) + γ i d t k = 1 n � + σ k 1 Q ( i ) k ( Y ( t )) d W i ( t ) ; 0 ≤ t < ∞ k = 1 where σ k > 0 , ( g k , 1 ≤ k ≤ n ) , ( γ i , 1 ≤ i ≤ n ) and γ are real constants with stability conditions n n k � � � g k + γ i = 0 , ( g ℓ + γ p ( ℓ ) ) < 0 , k = 1 , . . . , n − 1 , p ∈ Σ n . k = 1 i = 1 ℓ = 1 11

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend