human motor performance in robot2assisted surgery
play

Human&Motor&Performance& - PowerPoint PPT Presentation

Human&Motor&Performance& in&Robot2Assisted&Surgery Ilana&Nisky 1 ,&Michael&Hsieh 2,3 ,&and&Allison&Okamura 1 1 Department&of&Mechanical&Engineering,&Stanford&University 2


  1. Human&Motor&Performance& in&Robot2Assisted&Surgery Ilana&Nisky 1 ,&Michael&Hsieh 2,3 ,&and&Allison&Okamura 1 1 Department&of&Mechanical&Engineering,&Stanford&University 2 Department&of&Urology,&Stanford&University 3 Lucile&Packard&Children’s&Hospital Presented&by&Allison&Okamura&for&the 2014&North&American&Summer&School&on&Surgical&RoboMcs 1

  2. RoboMcs&for&Medical&IntervenMons Rehabilita)on Prosthe)cs Robot,assisted/surgery 2

  3. Robot2Assisted&Minimally&Invasive&Surgery Design&does&not&fully&consider&the&sensorimotor&capabiliMes&of& • the&surgeon Training&methods&have&not&been&opMmized • Studying&the&sensorimotor&system&could&impact&both! 3

  4. ComputaMonal&Motor&Control The&science&of&how&the&brain&controls&moMon&and& represents&the&external&world We&move&in&surprisingly& regular&ways… Morasso,&1981

  5. A&Simple&Model&of&Motor&Control Bhanpuri&et&al.&Brain&2014 5

  6. Effects&of&Arm&Dynamics Bhanpuri&et&al.&Brain&2014 6

  7. AdaptaMon&to&PerturbaMons MarMn&et&al.,&1996 Shadmehr&and&Mussa2Ivaldi,&1994

  8. OpMmality&and&Minimum&IntervenMon Trajectory&OpMmizaMon:& OpMmal&Feedback&Control Minimum&Jerk Minimum&intervenMon&principle Flash&and&&Hogan,&1985 Todorov&and&Jordan,&2002 8

  9. Take&Home To&build&roboMc&systems&that&are& operated&by& humans ,&we&should: – Study&the& human/operator – Apply&findings&to&design,&control,& and&training Operators/interact &with&roboMc& devices& – This&allows&us&to&study&the& human/operator &in& unprecedented&ways 9

  10. Surgery Open Minimally+Invasive Robot3Assisted IntuiMve&Surgical&

  11. Sensorimotor&Performance&in&RAS Cognitive control strategies Surgeon action (e.g. movement) Tool action (e.g. tool moves) Sensory feedback Patient interaction Jarc&and&Nisky,&in&press 11

  12. Sensorimotor&Performance&in&RAS Can&we&use&(and&extend)&what&we&know&about& human&motor&control& to&improve& design,&control,& and& training& in Robot2Assisted&Surgery? 12

  13. Sensorimotor&Performance&in&RAS Compare&teleoperated&vs.&freehand&movements,& and&expert&vs.&novice&parMcipants – TeleoperaMon&vs.&freehand&&=>&&robot&design – Experts&vs.&novices&&=>&&skill&evaluaMon&and&training (1) Tool3:p+kinema:cs (2) Arm+posture+variability 13

  14. Experimental&Setup 14

  15. Experimental&Setup Pose+trackers+on+user+arm Grasp+fixture+–+ posi:on+and+force+sensing+ at+tool+:p s t t w e & designed&by&Taru&Roy 15

  16. Experimental&Procedures Good Too slow long& reach& target short& reversal& target 16

  17. TeleoperaMon 17

  18. Freehand 18

  19. KinemaMcs Variability 19

  20. KinemaMcs Variability

  21. Data&Analysis&2&Reach 50 50 100 posiMon pos [mm] [mm] 0 0 0 end&of&movement -50 -50 00 -0.2 0 0.2 0.4 0.6 0.8 0 0.5 1 -0.2 0 0.2 0.4 0.6 0.8 [mm/sec] 200 200 500 velocity vel [mm/sec] 0 0 0 -200 00 00 -0.2 0 0.2 0.4 0.6 0.8 0 0.5 1 -0.2 0 0.2 0.4 0.6 0.8 acceleraMon 1000 1000 2000 acc [mm/sec 2 ] [mm/sec 2 ] peak& deceleraMon 0 0 0 peak& acceleraMon -1000 00 00 -0.2 0 0.2 0.4 0.6 0.8 0 0.5 1 -0.2 0 0.2 0.4 0.6 0.8 speed [mm/sec] 200 200 400 peak&speed& fused&correcMve correcMve [&&mm/sec] &&&&&&&&&movement movement speed 100 100 200 0 0 0 -0.2 0 0.2 0.4 0.6 0.8 0 0.5 1 -0.2 0 0.2 0.4 0.6 0.8 speed der [mm/sec 2 ] [mm/sec 2 ]&&& 1000 1000 2000 speed&der. 500 500 1000 0 0 0 Nisky&et&al., -0.2 0 0.2 0.4 0.6 0.8 0 0.5 1 -0.2 0 0.2 0.4 0.6 0.8 Mme&[sec] Mme&[sec] Mme&[sec] time [sec] time [sec] time [sec] MMVR2013

  22. Deviation from Straight Line Novice Expert Novice Expert 10mm Nisky&et&al.,&Surgical& Endoscopy&2014 First&trial Last&trial 22

  23. Performance Endpoint&Error&*&Movement&Time novice tele novice free expert tele expert free Nisky&et&al.,&Surgical& Endoscopy&2014 23

  24. Reach&Velocity&Skewness Increased&Peak&A&/&Peak&D& novice indicates&fused&correcMve& tele movements free expert 0 0.5 1 tele [&&mm/sec] 200 400 speed free 100 200 0 0 0 0.5 1 -0.2 0 0.2 0.4 0.6 0.8 [mm/sec 2 ]&&& speed&der. 2000 1000 1000 500 Expert 90 o % 0 0 -0.2 0 0.2 0.4 0.6 0.8 0 0.5 1 time [sec] time [sec] 180 o % Largest&in&teleoperated& 0 o % reaches&of&experts! !90 o %

  25. Learning&effects novice tele novice free expert tele expert free Nisky&et&al., 2014 25

  26. Learning&effects All&groups&learn&the&task&within&324& novice tele movement&blocks&in&the&first&session novice free TeleoperaMng&novices&also&learn&system& expert tele dynamics expert free Session&1 Session&2 Nisky&et&al., 2014 26

  27. KinemaMcs Variability 27

  28. Redundancy&and&Variability Human&arm&is&a& redundant & manipulator How&is&redundancy&resolved?& – Bernstein,&1967 Motor&system&constrains&only& task&relevant&variability – Uncontrolled&Manifold&Hypothesis& s Scholtz&ans&Schoner,&1999& w t – Minimum&intervenMon&principle& e Todorov&2002 28

  29. Uncontrolled&Manifold&Hypothesis Task&space Joint&&space α w [degrees] xt [mm] zt [mm] 150 60 0 140 40 -20 Reach 20 -40 130 0 -60 120 0 0.5 1 0 0.5 1 0 0.5 1 normalized time normalized time normalized time α [degrees] Variability& 2&kinds&of&trial2to2trial& variability&in&joint&angles coordinaMon R V =log(V other /V task ) – Changes&task&performance:&&V task R V >0&stabilize – Doesn’t&change&task& performance:&V other R V =0&independent Nisky&et&al.,&ICRA&2013 29

  30. Variability&in&Joint&Space&2&Uncontrolled&Manifold ( ) x [ t ] = F q [ t ] Forward&kinemaMcs ( ) x [ t ] − x [ t ] = J ( q [ t ]) q [ t ] − q [ t ] Linearize&FWD&kinemaMcs J ( q [ t ]) ⋅ e = 0 Calculate&null&space ( ) q UCM [ t ] = ee T q [ t ] − q [ t ] Project&variance&onto&null&and& ( ) − q UCM [ t ] q ORT [ t ] = q [ t ] − q [ t ] orthogonal&spaces& ⎛ ⎞ N ( ) ∑ 2 − 1 N − 1 Calculate&log&of& q UCM [ t ] d ucm ⎜ ⎟ variance&raMo R v [ t ] = log i = 1 ⎜ ⎟ N ∑ ( ) ⎜ ⎟ 2 − 1 N − 1 q ORT [ t ] d task ⎜ ⎟ ⎝ ⎠ Details&in&Nisky&et&al.,&ICRA&2013,& i = 1 Nisky&et&al.,&IEEE&TBME&2014&

  31. Variability&PredicMons XY&movements&are&stabilized&&&&&&R V >0 Z&movements&are&not&&&&&&&&&&&&&&&&&&&R V =0 Larger&R V &of&experts + Skill+increases+R V +(Muller+and+Sternad,+2004) Smaller&R V &in&teleoperaMon

  32. Trial2to2trial&Variability Experts Novices XY tele 6 6 XY free 4 4 ln V task Z tele Z free 2 2 0 0 0 0.5 1 0 0.5 1 0.5 1 0 0.5 normalized time normalized time tele -6 -6 free ln V joint -6.5 -6.5 0 0.5 1 0 0.5 1 normalized time normalized time XY tele 2 2 XY free R V [nu] Z tele 1 1 Z free 0 0 Nisky&et&al.,& IEEE&TBME&2014 0 0.5 1 0 0.5 1 normalized time normalized time 32

  33. CoordinaMon&of&Arm&Posture&Variability peak speed movement end The&task&requires&only& 1.8 1.8 XY tele accurate&&XY&movements XY free &&&&&&&&&XY&movements&&&&R V >0 1.6 1.6 R V [nu] &&&&&&&&&Z&movements&&&&&&&R V =0 1.4 1.4 1.2 1.2 Experience Z tele 0.4 0.4 & Larger&R V &of&experts Z free 0.2 0.2 R V [nu] & 0 0 TeleoperaMon& -0.2 -0.2 & Experts&R V &increase Expert Novice Expert Novice & Novices&R V &decrease Nisky&et&al.,&IEEE& TBME&2014 33

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend