homoclinic and heteroclinic motions in quantum dynamics
play

Homoclinic and Heteroclinic Motions in Quantum Dynamics F . - PowerPoint PPT Presentation

Introduction Constructing scar functions Unveiling homoclinic motions Homoclinic quantum numbers Homoclinic and Heteroclinic Motions in Quantum Dynamics F . Borondo Dep. de Qumica; Universidad Autnoma de Madrid, Instituto Mixto de


  1. Introduction Constructing scar functions Unveiling homoclinic motions Homoclinic quantum numbers Homoclinic and Heteroclinic Motions in Quantum Dynamics F . Borondo Dep. de Química; Universidad Autónoma de Madrid, Instituto Mixto de Ciencias Matemáticas CSIC-UAM-UC3M-UCM Stability and Instability in Mechanical Systems: Applications and Numerical Tools Barcelona, 1 December 2008 F. Borondo Homo and Heteroclinic Motions in QM 1/ 67

  2. Introduction Constructing scar functions Unveiling homoclinic motions Homoclinic quantum numbers Outline Introduction 1 Models Tools Periodic orbits in quantum mechanics: Scars Constructing scar functions 2 Unveiling homoclinic motions 3 Homoclinic quantum numbers 4 F. Borondo Homo and Heteroclinic Motions in QM 2/ 67

  3. Introduction Models Constructing scar functions Tools Unveiling homoclinic motions Periodic orbits in quantum mechanics: Scars Homoclinic quantum numbers Outline Introduction 1 Models Tools Periodic orbits in quantum mechanics: Scars Constructing scar functions 2 Unveiling homoclinic motions 3 Homoclinic quantum numbers 4 F. Borondo Homo and Heteroclinic Motions in QM 3/ 67

  4. Introduction Models Constructing scar functions Tools Unveiling homoclinic motions Periodic orbits in quantum mechanics: Scars Homoclinic quantum numbers In his pioneering work on chaos Poincaré showed the importance of Periodic orbits Homoclinic solutions Heteroclinic solutions F. Borondo Homo and Heteroclinic Motions in QM 4/ 67

  5. Introduction Models Constructing scar functions Tools Unveiling homoclinic motions Periodic orbits in quantum mechanics: Scars Homoclinic quantum numbers In this talk, we will discuss the importance of: Periodic orbits Homoclinic motions Heteroclinic motions in Quantum Mechanics F. Borondo Homo and Heteroclinic Motions in QM 5/ 67

  6. Introduction Models Constructing scar functions Tools Unveiling homoclinic motions Periodic orbits in quantum mechanics: Scars Homoclinic quantum numbers Outline Introduction 1 Models Tools Periodic orbits in quantum mechanics: Scars Constructing scar functions 2 Unveiling homoclinic motions 3 Homoclinic quantum numbers 4 F. Borondo Homo and Heteroclinic Motions in QM 6/ 67

  7. Introduction Models Constructing scar functions Tools Unveiling homoclinic motions Periodic orbits in quantum mechanics: Scars Homoclinic quantum numbers Model: Quartic oscillator 2 x 2 y 2 + ε 4 ( x 4 + y 4 ) , H = 1 2 ( P 2 x + P 2 y ) + 1 ε = 0 . 01 Smooth, homogeneous potential Mechanical similarity � 1 / 4 � 1 / 2 � 3 / 4 � − 1 / 4 � � � � q E , P E , S E , T E q 0 = P 0 = S 0 = T 0 = E 0 E 0 E 0 E 0 Free from hassles due to phase space evolution (bif’s) SOS: y = 0 , P y > 0 Very chaotic dynamics Thought hyperbolic for ε → 0 Dahlqvist and Russberg (1990) found POs for ε = 0 Also Waterland el at. for ε = 1 / 240 F. Borondo Homo and Heteroclinic Motions in QM 7/ 67

  8. Introduction Models Constructing scar functions Tools Unveiling homoclinic motions Periodic orbits in quantum mechanics: Scars Homoclinic quantum numbers Model: Billiards Bunimovitch stadium billiard Hyperbolic dynamics F. Borondo Homo and Heteroclinic Motions in QM 8/ 67

  9. Introduction Models Constructing scar functions Tools Unveiling homoclinic motions Periodic orbits in quantum mechanics: Scars Homoclinic quantum numbers Billiards: Models in Nanotechnology Eigler F. Borondo Homo and Heteroclinic Motions in QM 9/ 67

  10. Introduction Models Constructing scar functions Tools Unveiling homoclinic motions Periodic orbits in quantum mechanics: Scars Homoclinic quantum numbers Billiards: Models for Microcavity Lasers A. Douglas Stone, 1997 F. Borondo Homo and Heteroclinic Motions in QM 10/ 67

  11. Introduction Models Constructing scar functions Tools Unveiling homoclinic motions Periodic orbits in quantum mechanics: Scars Homoclinic quantum numbers Microdisk laser, Douglas Stone, PNAS, 2004 Top and side view of a GaAs microdisk ( ∼ 5.2 µ m diameter) on top of an Al 0 . 7 Ga 0 . 3 pedestal. A thin InAs quantum well layer in the middle layer serves as active medium. Image obtained with a scanning electron microscope. F. Borondo Homo and Heteroclinic Motions in QM 11/ 67

  12. Introduction Models Constructing scar functions Tools Unveiling homoclinic motions Periodic orbits in quantum mechanics: Scars Homoclinic quantum numbers Directional Laser emission Directional laser emission has direct applications in optical communications and optoelectronics F. Borondo Homo and Heteroclinic Motions in QM 12/ 67

  13. Introduction Models Constructing scar functions Tools Unveiling homoclinic motions Periodic orbits in quantum mechanics: Scars Homoclinic quantum numbers More on microlasers ... r ( φ ) = a ( 1 + η 0 cos 2 φ + ǫη 0 cos 4 φ ) F. Borondo Homo and Heteroclinic Motions in QM 13/ 67

  14. Introduction Models Constructing scar functions Tools Unveiling homoclinic motions Periodic orbits in quantum mechanics: Scars Homoclinic quantum numbers More on microlasers ... η = 0 . 09 η = 0 . 10 η = 0 . 12 η = 0 . 16 Exp. Th. A Th. B F. Borondo Homo and Heteroclinic Motions in QM 14/ 67

  15. Introduction Models Constructing scar functions Tools Unveiling homoclinic motions Periodic orbits in quantum mechanics: Scars Homoclinic quantum numbers More on microlasers ... F. Borondo Homo and Heteroclinic Motions in QM 15/ 67

  16. Introduction Models Constructing scar functions Tools Unveiling homoclinic motions Periodic orbits in quantum mechanics: Scars Homoclinic quantum numbers Outline Introduction 1 Models Tools Periodic orbits in quantum mechanics: Scars Constructing scar functions 2 Unveiling homoclinic motions 3 Homoclinic quantum numbers 4 F. Borondo Homo and Heteroclinic Motions in QM 16/ 67

  17. Introduction Models Constructing scar functions Tools Unveiling homoclinic motions Periodic orbits in quantum mechanics: Scars Homoclinic quantum numbers Quantum Mechanics P = 2 π � De Broglie Hypothesis: λ = h P Wave function: ψ ( q , t ) , q =positions, t =time Stationary Schrödinger equation: with ˆ H φ n ( q ) = E n φ n ( q ) Heisenberg Uncertainty Principle: ∆ q ∆ p ≥ � / 2 and ∆ E τ ≥ � / 2 F. Borondo Homo and Heteroclinic Motions in QM 17/ 67

  18. Introduction Models Constructing scar functions Tools Unveiling homoclinic motions Periodic orbits in quantum mechanics: Scars Homoclinic quantum numbers Example Helmholtz equation: ∇ 2 φ n = k 2 n φ n φ n ( boundary ) = 0 F. Borondo Homo and Heteroclinic Motions in QM 18/ 67

  19. Introduction Models Constructing scar functions Tools Unveiling homoclinic motions Periodic orbits in quantum mechanics: Scars Homoclinic quantum numbers Simpler example (even trivial) ψ I = ψ III = 0 d 2 ψ II − � 2 dx 2 + V ψ II = E ψ II 2 m √ d 2 ψ II 2 mE dx 2 + k 2 ψ II , k = � But, don’t forget the dynamics: k = P � F. Borondo Homo and Heteroclinic Motions in QM 19/ 67

  20. Introduction Models Constructing scar functions Tools Unveiling homoclinic motions Periodic orbits in quantum mechanics: Scars Homoclinic quantum numbers Solution ψ ( x ) = a sin kx + b cos kx First boundary condition: ψ ( 0 ) = 0 − → c = 0 ψ = b sin kx Normalization condition: � L � 0 | ψ | 2 dx = 1 − 2 → a = L Second boundary condition: → k n = n π ψ ( L ) = 0 − L Solutions: ψ n ( x ) = � 2 L sin n π x L , n = 1 , 2 , . . . F. Borondo Homo and Heteroclinic Motions in QM 20/ 67

  21. Introduction Models Constructing scar functions Tools Unveiling homoclinic motions Periodic orbits in quantum mechanics: Scars Homoclinic quantum numbers But, don’t forget the dynamics . . . k = P � Classical action: � L � L 0 k � dx = 2 k � L = 2 n π � Pdx = 2 0 Pdx = 2 L � L = nh Action is quantized in QM! F. Borondo Homo and Heteroclinic Motions in QM 21/ 67

  22. Introduction Models Constructing scar functions Tools Unveiling homoclinic motions Periodic orbits in quantum mechanics: Scars Homoclinic quantum numbers Quantization of the action. How? Einstein–Brillouin–Kramers (EBK) Method n j + α j � N � � � i P i dq i = h C j 4 Classical info = Quantum condition Associated WKB (Wentzel–Kramers–Brillouin) wave function j A j e iS j ( q ) / � ψ ( q ) = � F. Borondo Homo and Heteroclinic Motions in QM 22/ 67

  23. Introduction Models Constructing scar functions Tools Unveiling homoclinic motions Periodic orbits in quantum mechanics: Scars Homoclinic quantum numbers Phase space representations of QM Wigner transform (1932) "On the quantum corrections to statistical thermodynamics" ds e isP ψ ∗ � � q − s � � q + s � W ( q , P ) = ψ 2 2 F. Borondo Homo and Heteroclinic Motions in QM 23/ 67

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend