higher spin gauge theories lecture ii
play

Higher Spin Gauge Theories Lecture II Lecture II a 1. 4 d HS fields - PowerPoint PPT Presentation

Higher Spin Gauge Theories Lecture II Lecture II a 1. 4 d HS fields in spinor notation 2. Weyl algebra 3. Star product 4. Simplest HS algebra 5. Properties of HS algebras 6. Singletons and AdS/CFT Lecture II b 1. Cubic HS action 2.


  1. Higher Spin Gauge Theories Lecture II Lecture II a 1. 4 d HS fields in spinor notation 2. Weyl algebra 3. Star product 4. Simplest HS algebra 5. Properties of HS algebras 6. Singletons and AdS/CFT Lecture II b 1. Cubic HS action 2. Unfolded dynamics 3. Equations of motion in all orders 4. 4 d HS fields in ten-dimensional space-time 1

  2. Spinorial and tensorial HS models Tensorial HS models in any dimension: HS fields are realized as forms carrying tensor indices. Spinorial 3 d and 4 d HS models: HS fields are realized as forms carrying spinor indices. 2

  3. The case of four dimensions Key fact 2 × 2 = 4 Minkowski coordinates as 2 × 2 hermitian matrices 3 � x n ⇒ x α ˙ α = α , − → x n σ α ˙ α σ α ˙ α = ( I α ˙ σ α ˙ α , k ) n n n =0 I α ˙ α : unit matrix − → σ α ˙ α k , k = 1 , 2 , 3: Pauli matrices α, ˙ α, β, . . . = 1 , 2, ˙ β, . . . = 1 , 2 two-component spinor indices α | = ( x 0 ) 2 − ( x 1 ) 2 − ( x 2 ) 2 − ( x 3 ) 2 det | x α ˙ Lorentz symmetry: sl (2 , C ) ∼ o (3 , 1). 3

  4. Two-component spinors Two-component indices are contracted by the antisymmetric 2 × 2 matrix ǫ 12 = ǫ 12 = 1 , ǫ αγ ǫ βγ = δ β ψ α = ǫ αβ ψ β , ψ α = ψ β ǫ βα ǫ αβ : α , Lorentz invariants ψ α χ α : Lorentz Symmetry: sl 2 ( C ) ∼ o (3 , 1). Dictionary between tensors and multispinors by: αβ = σ [ a α σ b ] β , ˙ β = σ [ a α σ b ] α ˙ σ a σ ab σ ab α , ¯ α ˙ α ˙ α ˙ β α ˙ β ˙ Pair of dotted and undotted indices: vector Pairs of symmetrized indices of the same type: antisymmetric tensors Irreducible representations of the Lorentz group: symmetric multispinors A α 1 ...α n , ˙ β m ⊕ A β 1 ...β m , ˙ α n ∼ ω a 1 ...a p ,b 1 ...b q , p = | n + m | / 2 , q = | n − m | / 2 β 1 ... ˙ α 1 ... ˙ p A a 1 ...a p ,b 1 ...b q η a 1 a 2 = 0 . Irreducibility: A ( a 1 ...a p ,a p +1 ) b 2 ...b q = 0 : , q 4

  5. Gauge connections Gauge 1-forms ω α 1 ...α n , ˙ β m , n + m = 2( s − 1) β 1 ... ˙ ω ( x ) = dx n ω n ( x ) s = 1 : s = 2 : ω α ˙ β ( x ) , ω αβ ( x ) , ¯ ω ˙ β ( x ) α ˙ s = 3 / 2 : ω α ( x ) , ¯ ω ˙ α ( x ) Frame-like fields: | n − m | = 0 (bosons) or | n − m | = 1 fermions Auxiliary Lorentz-like fields: | n − m | = 2 (bosons) Extra fields: | n − m | > 2 5

  6. Gauge invariant field strengths 0-forms | n − m | = 2 s C α 1 ...α n , ˙ β m , β 1 ... ˙ (Anti)selfdual Weyl tensors carry only (dotted)undotted spinor indices s = 0 : C ( x ) ¯ s = 1 / 2 : C α ( x ) , C ˙ α ( x ) ¯ s = 1 : C αβ , C ˙ α ˙ β ¯ s = 3 / 2 : C αβγ , C ˙ α ˙ β ˙ γ ¯ s = 2 : C α 1 ...α 4 , C ˙ α 1 ... ˙ α 4 6

  7. HS multiplets Infinite set of spins s = 0 , 1 / 2 , 1 , 3 / 2 , 2 . . . ω α 1 ...α n , ˙ β m and C α 1 ...α n , ˙ β m with all n ≥ 0 and m ≥ 0. β 1 ... ˙ β 1 ... ˙ Generating functions ω ( Y | x ) and C ( Y | x ): Unrestricted functions of com- muting spinor (twistor) variables Y = ( y α , ¯ y ˙ α ) ∞ � 1 α m y α 1 . . . y α n ¯ y ˙ α 1 . . . ¯ y ˙ α m A ( Y | x ) = 2 n ! m ! A α 1 ...α n , ˙ α 1 ... ˙ n,m =0 Fermions require doubling of fields ω ii ( y, ¯ C i 1 − i ( y, ¯ y | x ) , y | x ) , i = 0 , 1 , ω ii ( y, ¯ y | x ) = ω ii (¯ C i 1 − i ( y, ¯ y | x ) = C 1 − i i (¯ ¯ ¯ y, y | x ) , y, y | x ) . 7

  8. Twistor Central On-shell theorem The full unfolded system for the doubled sets of free fields is ∂ 2 ∂ 2 α ˙ 1 ( y, y | x ) = H ˙ β R ii β C 1 − i i (0 , y | x ) + H αβ ∂y α ∂y β C i 1 − i ( y, 0 | x ) , α ∂y ˙ ∂y ˙ D 0 C i 1 − i ( y, y | x ) = 0 , ˜ where α ˙ β = h α ˙ α ∧ h α ˙ H αβ = h α ˙ α , H ˙ β , α ∧ h β ˙ y | x ) = D ad ω ( y, ¯ R 1 ( y, ¯ y | x ) � � � � ∂ 2 ∂ ∂ D ad ω = D L − λh α ˙ D = D L + λh α ˙ β β ˜ β + ∂y α ¯ y α ¯ β + y α y ˙ , y ˙ , β y ˙ y ˙ ∂y α ∂ ¯ β ∂ ¯ � � ∂ ∂ α ˙ D L A = d x − ω αβ y α ω ˙ β ¯ ∂y β + ¯ y ˙ . α y ˙ β ∂ ¯ NonAbelian generalization via star-product algebra 8

  9. Weyl algebra associative algebra of functions f (ˆ Weyl algebra A n : Y ) of n pairs of oscillators [ˆ Y µ , ˆ Y ν ] = 2 iC µν , µ, ν = 1 , . . . 2 n . Different types of orderings are equivalent for polynomial f (ˆ Y ) because commutators of oscillators decrease an order of polynomial. Weyl ordering: totally symmetric ∞ � f µ 1 ...µ p ˆ f (ˆ Y µ 1 . . . ˆ Y ) = Y µ p , p =0 f µ 1 ...µ p totally symmetric a + j ] = δ j a − Wick (normal) ordering [ˆ i , ˆ i ∞ � χ i 1 ...i p a ± ) = a + j 1 . . . ˆ a + j q ˆ a − a − f (ˆ j 1 ...j q ˆ i 1 . . . ˆ i q p,q =0 9

  10. Star Product Weyl symbol f ( Y ) of the operator ˆ f (ˆ Y ) is a function of commuting variables Y µ that has the same expansion ∞ � f µ 1 ...µ p Y µ 1 . . . Y µ p f ( Y ) = p =0 Y ν is the Weyl symbol of ˆ Y ν . f ( ˆ Wick symbol f ( a ± ) of the operator ˆ a ± ) is a function of commuting variables a ± that has the same expansion ∞ � χ i 1 ...i p f ( a ± ) = j 1 ...j q a + j 1 . . . a + j q a − i 1 . . . a − i q p,q =0 Star–product algebra is defined by the rule f (ˆ ˆ g (ˆ Weyl star-product ( f ∗ g )( Y ) is a symbol of Y )ˆ Y ) . In particular, [ Y ν , Y µ ] ∗ = 2 iC νµ , [ a , b ] ∗ = a ∗ b − b ∗ a Wick star-product ( f ⋆ g )( a ± ) a ± )ˆ a ± ) . ˆ is a symbol of f (ˆ g (ˆ 10

  11. Examples Y µ ∗ Y ν = Y ( µ Y ν ) + iC µν i ⋆ a + j = a + j a − a + j ⋆ a − i + δ j i = a + j a − a − i , i Problem 2.1. Prove [ Y ν , f ( Y )] ∗ = 2 i ∂ Y ν = C νµ Y µ ∂Y ν f ( Y ) , { Y ν , f ( Y ) } ∗ = 2 Y ν f ( Y ) a + i ⋆ f ( a ± ) = a + i f ( a ± ) , f ( a ± ) ⋆ a − j = f ( a ± ) a − j � � � � ∂ ∂ f ( a ± ) ⋆ a + = a + j + a − i ⋆ f ( a ± ) = a − f ( a ± ) , f ( a ± ) i + ∂a − ∂a + i j 11

  12. Weyl-Moyal star-product For the Weyl ordering, star–product is given by the Weyl-Moyal formula ( f 1 ∗ f 2 )( Y ) = f 1 ( Y ) exp [ i ← ∂ ν − − → ∂ ∂ µ ≡ ∂ µ C νµ ] f 2 ( Y ) , ∂Y µ Problem 2.2. Prove using Campbell-Hausdorf formula for exponentials exp J ν ˆ Y ν Important properties • associativity: ( f ∗ g ) ∗ h = f ∗ ( g ∗ h ) • regularity: star product of any two polynomials of Y is a polynomial The Weyl-Moyal star product has integral representation � 1 dSdT exp( − iS µ T ν C µν ) f 1 ( Y + S ) f 2 ( Y + T ) ( f 1 ∗ f 2 )( Y ) = π 2 M 12

  13. Supertrace str ( f ( Y )) = f (0) Boson-fermion parity for spinorial Y ν f ( Y ) = ( − 1) π ( f ) f ( − Y ) str ( f ( Y ) ∗ g ( Y )) = ( − 1) π ( f ) str ( g ( Y ) ∗ f ( Y )) = ( − 1) π ( g ) str ( g ( Y ) ∗ f ( Y )) Bilinear form str ( f ∗ g ) is invariant under δf = [ ǫ , f ] ∗ provided that fermion fields carry additional Grassmann parity In components ∞ i n + m − 1 � β m ∧ B α 1 ...α n , ˙ β 1 ... ˙ β m , str ( A ∗ B ) = A α 1 ...α n , ˙ β 1 ... ˙ n ! m ! n,m =0 for ∞ � 1 α m y α 1 . . . y α n ¯ y ˙ α 1 . . . ¯ y ˙ α m A ( Y ) = 2 n ! m ! A α 1 ...α n , ˙ α 1 ... ˙ n,m =0 13

  14. NonAbelian HS Algebra R ( Y | x ) = dω ( Y | x ) + ω ( Y | x ) ∗ ∧ ω ( Y | x ) ω 0 = 1 α ˙ β + 2 λh α ˙ ω ˙ 4 i ( ω αβ β β y α ¯ ω = ω 0 + ω 1 , 0 y α y β + ¯ 0 ¯ y ˙ α ¯ y ˙ y ˙ β ) R 0 = 0 , R 1 = D 0 ω 1 = dω 1 + [ ω 0 , ω 1 ] ∗ HS gauge transformation δω ( Y | x ) = Dǫ ( Y | x ) = dǫ ( Y | x ) + [ ω ( Y | x ) , ǫ ( Y | x )] ∗ • The simplest 4 d HS algebra hu (1 , 0 | 4) is the infinite-dimensional Lie algebra of even polynomials f ( − Y ) = f ( Y ) with star-commutator [ f , g ] ∗ as Lie product 14

  15. • T νµ - generators of sp (4) ∼ (3 , 2) ⊂ hu (1 , 0 | 4) : bilinears of Y . Y µ independent generators correspond to spin one spin s generators are homogeneous Weyl symbols ω s ( νY | x ) = ν 2( s − 1) ω ( Y | x ) . hu (1 , 0 | 4) is a global symmetry algebra of the most symmetric vacuum solution of the nonlinear bosonic HS theory • HS algebras possess extensions to superalgebras hu ( n, m | 2 M ), ho ( n, m | 2 M husp (2 n, 2 m | 2 M ) with fermions and non-Abelian spin one YM gauge al- gebras u ( n ) ⊕ u ( m ), o ( n ) ⊕ o ( m ), usp (2 n ) ⊕ usp (2 m ) The construction of HS gauge symmetries is analogous Chan-Paton construction in String Theory Orthogonal and symplectic gauge symmetry result from the construc- tion analogous to orientifolds (Pradisi, Sagnotti) but in the space of auxiliary oscillators rather than in space-time 15

  16. Properties of HS algebras Let T s 1 be homogeneous polynomial of degree 2( s − 1) [ T s 1 , T s 2 ] = T s 1 + s 2 − 2 m = T s 1 + s 2 − 2 + T s 1 + s 2 − 4 + . . . + T | s 1 − s 2 | +2 . Once a gauge field of spin s > 2 appears, the HS symmetry algebra requires an infinite tower of HS gauge fields together with gravity: [ T s , T s ] gives rise to generators T 2 s − 2 , of a gauge field of spin s ′ = 2 s − 2 > s and also gives rise to generators T 2 of o (3 , 2) ∼ sp (4) . The spin- 2 barrier separates theories with usual finite-dimensional lower- spin symmetries from those with infinite-dimensional HS symmetries. The maximal finite-dimensional subalgebra of hu (1 , 0 | 4) is: u (1) ⊕ o (3 , 2), where u (1) is associated with the unit element. Even spin generators T 2 p span a proper subalgebra ho (1 , 0 | 4). 16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend