high resolution all regime schemes
play

High-resolution all-regime schemes Giacomo Dimarco * , Raphal Loubre - PowerPoint PPT Presentation

High-resolution all-regime schemes Giacomo Dimarco * , Raphal Loubre , Victor Michel-Dansac , Andrea Thomann , Marie-Hlne Vignal October 06 & 13, 2020 Sminaire MoCo * Department of Mathematics and Computer Science,


  1. u n Barrier to the use of explicit schemes 2 0. not actually used the limit We do not recover the incompressible limit! Note that we have 0 u 2 u n 1 u n 7/57 semi-discretization reads Assume ρ n and u n are known at time t n : the classical explicit time  ρ n + 1 − ρ n  + ∇ · ( ρ u ) n = 0 , ( 1 )   ∆ t ( ρ u ) n + 1 − ( ρ u ) n  + ∇ · ( ρ u ⊗ u ) n + 1   ε ∇ p ( ρ n ) = 0 . ( 2 ) ∆ t Set ρ n = ρ 0 and ∇ · u n = 0. Does ρ n + 1 = ρ 0 and ∇ · u n + 1 = 0 when ε → 0? ⇒ ρ n + 1 = ρ n − ∆ t ∇ · ( ρ u ) n = ρ 0 − ∆ t ρ 0 ∇ · u n = ρ 0 ( 1 ) = ⇒ ρ 0 u n + 1 = ρ 0 u n − ∆ t ρ 0 ∇ · ( u ⊗ u ) n − ∆ t 1 ( 2 ) = ε ∇ p ( ρ 0 )

  2. Barrier to the use of explicit schemes 7/57 semi-discretization reads Assume ρ n and u n are known at time t n : the classical explicit time  ρ n + 1 − ρ n  + ∇ · ( ρ u ) n = 0 , ( 1 )   ∆ t ( ρ u ) n + 1 − ( ρ u ) n  + ∇ · ( ρ u ⊗ u ) n + 1   ε ∇ p ( ρ n ) = 0 . ( 2 ) ∆ t Set ρ n = ρ 0 and ∇ · u n = 0. Does ρ n + 1 = ρ 0 and ∇ · u n + 1 = 0 when ε → 0? ⇒ ρ n + 1 = ρ n − ∆ t ∇ · ( ρ u ) n = ρ 0 − ∆ t ρ 0 ∇ · u n = ρ 0 ( 1 ) = ⇒ ρ 0 u n + 1 = ρ 0 u n − ∆ t ρ 0 ∇ · ( u ⊗ u ) n − ∆ t 1 ( 2 ) = ε ∇ p ( ρ 0 ) ⇒ ∇ · u n + 1 = ∇ · u n − ∇ 2 : ( u ⊗ u ) n ̸ = 0 ∇ · ( 2 ) = � We do not recover the incompressible limit! Note that we have not actually used the limit ε → 0.

  3. 1 x t n 1 n t 0 Asymptotic-preserving time semi-discretization 1 n 1 0 n 1 0 u n n n 0 0 1 0 0 u n 1 u n 1 0 We recover the incompressible limit! The time semi-discretization is asymptotically consistent . 1 1 8/57 n n 0 1 n p 2 time semi-discretization reads Assume ρ n and u n are known at time t n : an Implicit-Explicit (IMEX)  ρ n + 1 − ρ n + ∇ · ( ρ u ) n + 1 = 0 ,  ( 1 )   ∆ t ( ρ u ) n + 1 − ( ρ u ) n  + ∇ · ( ρ u ⊗ u ) n + 1  ε ∇ p ( ρ n + 1 ) = 0 .  ( 2 ) ∆ t Set ρ n = ρ 0 and ∇ · u n = 0. Does ρ n + 1 = ρ 0 and ∇ · u n + 1 = 0 when ε → 0?

  4. t n 1 n t 0 Asymptotic-preserving time semi-discretization 0 n 1 0 u n n 1 n 1 1 0 0 u n 1 u n 1 0 We recover the incompressible limit! The time semi-discretization is asymptotically consistent . 0 n 8/57 1 0 time semi-discretization reads Assume ρ n and u n are known at time t n : an Implicit-Explicit (IMEX)  ρ n + 1 − ρ n + ∇ · ( ρ u ) n + 1 = 0 ,  ( 1 )   ∆ t ( ρ u ) n + 1 − ( ρ u ) n  + ∇ · ( ρ u ⊗ u ) n + 1  ε ∇ p ( ρ n + 1 ) = 0 .  ( 2 ) ∆ t Set ρ n = ρ 0 and ∇ · u n = 0. Does ρ n + 1 = ρ 0 and ∇ · u n + 1 = 0 when ε → 0? ⇒ ∇ p ( ρ n + 1 ) = 0 = ⇒ ρ n + 1 ( x ) = ρ n + 1 ( 2 ) =

  5. t 0 Asymptotic-preserving time semi-discretization 0 is asymptotically consistent . We recover the incompressible limit! The time semi-discretization 0 1 u n 1 u n 0 0 1 0 0 8/57 time semi-discretization reads Assume ρ n and u n are known at time t n : an Implicit-Explicit (IMEX)  ρ n + 1 − ρ n + ∇ · ( ρ u ) n + 1 = 0 ,  ( 1 )   ∆ t ( ρ u ) n + 1 − ( ρ u ) n  + ∇ · ( ρ u ⊗ u ) n + 1  ε ∇ p ( ρ n + 1 ) = 0 .  ( 2 ) ∆ t Set ρ n = ρ 0 and ∇ · u n = 0. Does ρ n + 1 = ρ 0 and ∇ · u n + 1 = 0 when ε → 0? ⇒ ∇ p ( ρ n + 1 ) = 0 = ⇒ ρ n + 1 ( x ) = ρ n + 1 ( 2 ) = ∫ ∫ = | Ω | ρ n − ∆ t ρ n + 1 u n + 1 · n = ⇒ ρ n + 1 = ρ n = ρ 0 ⇒ | Ω | ρ n + 1 ( 1 ε ) = Ω ∂Ω

  6. Asymptotic-preserving time semi-discretization 0 is asymptotically consistent . 0 0 8/57 time semi-discretization reads Assume ρ n and u n are known at time t n : an Implicit-Explicit (IMEX)  ρ n + 1 − ρ n + ∇ · ( ρ u ) n + 1 = 0 ,  ( 1 )   ∆ t ( ρ u ) n + 1 − ( ρ u ) n  + ∇ · ( ρ u ⊗ u ) n + 1  ε ∇ p ( ρ n + 1 ) = 0 .  ( 2 ) ∆ t Set ρ n = ρ 0 and ∇ · u n = 0. Does ρ n + 1 = ρ 0 and ∇ · u n + 1 = 0 when ε → 0? ⇒ ∇ p ( ρ n + 1 ) = 0 = ⇒ ρ n + 1 ( x ) = ρ n + 1 ( 2 ) = ∫ ∫ = | Ω | ρ n − ∆ t ρ n + 1 u n + 1 · n = ⇒ ρ n + 1 = ρ n = ρ 0 ⇒ | Ω | ρ n + 1 ( 1 ε ) = Ω ∂Ω ⇒ ∇ · u n + 1 = 0 ⇒ ρ 0 = ρ 0 + ∆ t ρ 0 ∇ · u n + 1 = ( 1 ) = � We recover the incompressible limit! The time semi-discretization

  7. 1 n 1 n 2 n u n We get an uncoupled formulation of this AP time semi-discretization: u n u n Asymptotic-preserving time semi-discretization 2 into 1 p n 1 2 u Yes: the time semi-discretization is asymptotically stable . 1 n t 2 n t t p n 1 t 2 u 0 1 n 1 1 time semi-discretization reads Is the pressure wave equation discretized implicitly? 9/57 t n 1 2 Assume ρ n and u n are known at time t n : an Implicit-Explicit (IMEX)  ρ n + 1 − ρ n + ∇ · ( ρ u ) n + 1 = 0 ,  ( 1 )   ∆ t ( ρ u ) n + 1 − ( ρ u ) n  + ∇ · ( ρ u ⊗ u ) n + 1  ε ∇ p ( ρ n + 1 ) = 0 .  ( 2 ) ∆ t

  8. We get an uncoupled formulation of this AP time semi-discretization: u n u n t 2 into 1 n 1 n t Asymptotic-preserving time semi-discretization Yes: the time semi-discretization is asymptotically stable . n 1 t 2 u 0 p 9/57 Is the pressure wave equation discretized implicitly? time semi-discretization reads Assume ρ n and u n are known at time t n : an Implicit-Explicit (IMEX)  ρ n + 1 − ρ n + ∇ · ( ρ u ) n + 1 = 0 ,  ( 1 )   ∆ t ( ρ u ) n + 1 − ( ρ u ) n  + ∇ · ( ρ u ⊗ u ) n + 1  ε ∇ p ( ρ n + 1 ) = 0 .  ( 2 ) ∆ t ( 1 ) n + 1 − ( 1 ) n ⇒ ρ n + 1 − 2 ρ n + ρ n − 1 ε∆ p ( ρ n + 1 ) = ∇ 2 : ( ρ u ⊗ u ) n − ∇ · ( 2 ) = − 1 ∆ t ∆ t 2

  9. Asymptotic-preserving time semi-discretization Is the pressure wave equation discretized implicitly? Yes: the time semi-discretization is asymptotically stable . 9/57 time semi-discretization reads Assume ρ n and u n are known at time t n : an Implicit-Explicit (IMEX)  ρ n + 1 − ρ n + ∇ · ( ρ u ) n + 1 = 0 ,  ( 1 )   ∆ t ( ρ u ) n + 1 − ( ρ u ) n  + ∇ · ( ρ u ⊗ u ) n + 1  ε ∇ p ( ρ n + 1 ) = 0 .  ( 2 ) ∆ t ( 1 ) n + 1 − ( 1 ) n ⇒ ρ n + 1 − 2 ρ n + ρ n − 1 ε∆ p ( ρ n + 1 ) = ∇ 2 : ( ρ u ⊗ u ) n − ∇ · ( 2 ) = − 1 ∆ t ∆ t 2 We get an uncoupled formulation of this AP time semi-discretization: ⇒ ρ n + 1 − ρ n + ∇ · ( ρ u ) n − ∆ t ε ∆ p ( ρ n + 1 ) − ∆ t ∇ 2 : ( ρ u ⊗ u ) n = 0 . ∇ · ( 2 ) into ( 1 ) = ∆ t

  10. IMEX formulation Rewrite this time semi-discretization under the following IMEX 1 0 where we have set: ( Implicit-Explicit ) form: 10/57  ρ n + 1 − ρ n + ∇ · ( ρ u ) n + 1 = 0 ,  ( 1 )   ∆ t ( ρ u ) n + 1 − ( ρ u ) n  + ∇ · ( ρ u ⊗ u ) n + 1  ε ∇ p ( ρ n + 1 ) = 0 .  ( 2 ) ∆ t W n + 1 − W n + ∇ · F e ( W n ) + ∇ · F i ( W n + 1 ) = 0 , ∆ t � � � � � � ρ ρ u W = F e ( W ) = F i ( W ) = , , . ρ u ⊗ u ε p ( ρ ) I ρ u

  11. CFL condition in 1D 2. The time step only depends on the explicit velocities: 11/57 W n + 1 − W n + ∂ x F e ( W n ) + ∂ x F i ( W n + 1 ) = 0 ∆ t 1. The characteristic velocities coming from F e and F i are as follows:  F e : λ 1 e = 0 , λ 2 e = 2 u ,   � γρ γ − 1  λ ± F i : i = ± ,  ε and therefore both F e and F i are hyperbolic fmuxes. ∆ x √ ε � � ∆ t AP � ∆ x recall ∆ t class. � − − − → 2 | u | . | u √ ε ± � γρ γ − 1 | ε → 0 0 Next step : space discretization of ∂ x F e and ∂ x F i .

  12. Finite volume space discretization W n j j j We consider the fjnite volume framework: outgoing fmux incoming fmux W n j W n We obtain the following fully discrete scheme: 2 x 1. the space domain is discretized with cells, 2. the cell values W n 12/57 2 j are updated with a discretization of the fmuxes. F ( W n j ) F ( W n j + 1 ) j − 1 , W n j , W n j − 1 j + 1 × × x j − 1 x j + 1 j + ∆ t + ∆ t � � W n + 1 F i ( W n + 1 j − 1 , W n + 1 ) − F i ( W n + 1 , W n + 1 � � = W n F e ( W n j − 1 , W n j ) − F e ( W n j , W n j + 1 ) j + 1 ) , ∆ x ∆ x where the numerical fmuxes F e and F i have to be determined.

  13. 13/57 2 centred and viscosity parts: R L 2 L ∞ -stable space discretization Between cells W L and W R , we assume that the fmuxes are made of  F e ( W L , W R ) = ( F e ( W L ) + F e ( W R ))  − D e ( W L , W R )( W R − W L ) ,  F i ( W L , W R ) = ( F i ( W L ) + F i ( W R ))   − D i ( W L , W R )( W R − W L ) . • For D e , any solver can be used (Rusanov, HLL, …). • For D i , a linear stability analysis shows that: ◮ D i = 0 (i.e. a centred fmux) leads to a L 2 -stable scheme, ◮ L ∞ stability is achieved by taking (for the Rusanov fmux):  � �  γρ γ − 1 γρ γ − 1 D i ( W L , W R ) = max ,  .  ε ε

  14. Importance of the upwind implicit viscosity To highlight the relevance of upwinding the implicit viscosity, we 14/57 display the density ρ in the vicinity of a shock wave and a rarefaction wave ( ε = 0 . 99, 45 cells in the left panel, 150 cells in the right panel). 2 2 Exact Exact AP Di/=0 AP Di/=0 AP Di=0 AP Di=0 1.9 1.9 1.8 1.8 1.7 1.7 1.6 1.6 1.5 1.5 1.4 1.4 1.3 1.3 1.2 1.2 1.1 1.1 1 1 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.14 0.16 0.18 0.2 0.22 0.24 0.26 × : centered implicit discretization = ⇒ L 2 stability and less difgusive ⇒ L ∞ stability but more difgusive : upwind implicit discretization =

  15. Asymptotic preservation but difgusive results Class.: CPU time 0.14 57 loops AP: CPU time 0.82 4036 loops 15/57 CPU time 1.46 Class.: 273 loops CPU time 0.07 AP: 510 loops − 4 6 x 10 ε = 0 . 99, 300 cells 1.8 Class. scheme Class. scheme 1.6 1st-order AP 5 1st-order AP 1.4 Density 4 Time steps 1.2 3 1 0.8 2 0.6 1 0.4 0 0.2 0 0.01 0.02 0.03 0.04 0.05 0.06 0 0.2 0.4 0.6 0.8 1 x Time 1 − 3 ε = 10 − 4 , 300 cells Class. scheme 10 1st-order AP Density Time steps Class. scheme 1 − 4 10 1st-order AP − 5 0.9999 10 0 0.01 0.02 0.03 0.04 0.05 0.06 0 0.2 0.4 0.6 0.8 1 x Time

  16. Asymptotic preservation but difgusive results Goal : build high-order schemes that • remain in the IMEX framework, to conserve the AP properties; 16/57 the viscosity Underlying of − 4 10 1 ε = 10 − 4 Class. scheme Class. scheme AP scheme AP scheme f Density Time steps − 5 10 1 − 6 10 0.9999 0 0.01 0.02 0.03 0.04 0.05 0.06 0 0.2 0.4 0.6 0.8 1 x Time � � � It is necessary to use high-order schemes for better results in all regimes of ε . • remain L ∞ -stable.

  17. Multi-scale models and their numerical approximation A fjrst-order AP scheme for the isentropic Euler equations [Dimarco, Loubère, Vignal, ’17] High-order schemes in time and their failings [Dimarco, Loubère, M.-D., Vignal, ’18] [M.-D., Thomann, ’20] [M.-D., Thomann, in progress] Conclusion and future work “Second-order” L ∞ -stable schemes “High-order” L ∞ -stable schemes

  18. Derivation of high-order IMEX schemes t s s W n t n t n s steps IMEX division : t n 17/57 t General principle : t n ∂ t W + ∇ · F e ( W ) + ∇ · F i ( W ) = 0 Assume that W n is known at time t n and compute the update W n + 1 by introducing s intermediate time steps. [ ] [ ] � | | | | | t n + 1 t n + 1 t n , k . . . . . . • Quadratures between t n and t n + 1 , introducing intermediate values: ∫ t n + 1 ∫ t n + 1 W ( t n + 1 ) = W ( t n ) − ∇ · F e ( W ( t )) dt − ∇ · F i ( W ( t )) dt ∑ ∑ ˜ W n + 1 b k ∇ · F e ( W n , k ) − ∆ t b k ∇ · F i ( W n , k ) = − ∆ t k = 1 k = 1

  19. Derivation of high-order IMEX schemes t n t n (implicit part) t t n (explicit part) t t n t k W n 18/57 t n t n • Expression of the intermediate values at times t n , k = t n + c k ∆ t : ∫ t n , k W ( t n , k ) = W ( t n ) + ∂ t W ( t ) dt • Quadratures between t n and t n , k , ∀ k ∈ � 1 , s � : ∫ t n , k ∫ t n , k W ( t n , k ) = W ( t n ) − ∇ · F e ( W ( t )) dt − ∇ · F i ( W ( t )) dt k − 1 ∑ ∑ a k , l ∇ · F e ( W n , l ) − ∆ t a k , l ∇ · F i ( W n , l ) W n , k ˜ = − ∆ t l = 1 l = 1 ] [ | | | [ ] t n , k -1 t n , k | | | ] [ t n , k | | | t n , k

  20. Derivation of high-order IMEX schemes . b s b 1 0 c s . The arbitrarily high-order IMEX time semi-discretization reads: ... 0 ... . . . . . c 1 0 0 ... b s b 1 c s . . . ... c 2 . . . . . . 0 . . 19/57 c 1 Butcher tableaux (Runge-Kutta time discretizations): Explicit part s k Implicit part 0 s 0 0 0 c 2 k − 1 ∑ ∑ ∀ k ∈ � 1 , s � , W n , k = W n − ∆ t a k , l ∇ · F e ( W n , l ) − ∆ t a k , l ∇ · F i ( W n , l ) , ˜ l = 1 l = 1 ∑ ∑ W n + 1 = W n − ∆ t ˜ b k ∇ · F e ( W n , k ) − ∆ t b k ∇ · F i ( W n , k ) . k = 1 k = 1 ˜ · · · · · · a 1 , 1 ˜ ˜ . . . . . . a 2 , 1 a 2 , 1 a 2 , 2 ˜ ˜ ˜ . . . . . . a s , 1 a s , s − 1 a s , 1 a s , s − 1 a s , s ˜ ˜ . . . . . . . . . . . .

  21. IMEX schemes: a fjrst-order example 0 s s s s To yield a fjrst-order accurate scheme, the s -stage Butcher tableaux We consider the following Butcher tableaux: 0 c 2 c 1 implicit b 2 b 1 20/57 b 2 0 0 c 2 c 1 explicit b 1 ˜ a 1 , 1 ˜ ˜ a 2 , 1 a 2 , 2 a 2 , 1 ˜ ˜ have to satisfy the following consistency conditions: ∀ l ∈ � 1 , s � , ∑ ∑ ∑ ∑ ˜ ˜ c k = ˜ a k , l , c k = a k , l , b k = 1 , b k = 1 . l = 1 l = 1 k = 1 k = 1

  22. IMEX schemes: a fjrst-order example 0 1 0 explicit 0 1 0 0 1 0 With the compatibility conditions, the tableaux become: 1 implicit 0 1 0 0 0 1 The simplest example ( Forward-Backward Euler ) is as follows: 21/57 0 c 2 b 2 b 2 explicit 0 c 2 0 0 0 b 2 implicit c 1 c 2 c 1 ˜ ˜ a 2 , 2 − c 2 a 2 , 2 1 − ˜ ˜ 1 − b 2

  23. IMEX schemes: a fjrst-order example 0 1 0 0 0 1 0 implicit 1 0 1 0 0 1 0 explicit 0 1 22/57 W ( 1 ) W ( 2 ) W n + 1 W ( 1 ) W ( 2 ) W ( 1 ) W ( 2 )

  24. IMEX schemes: a fjrst-order example 0 1 0 0 0 1 0 implicit 1 0 22/57 1 0 0 1 0 explicit 0 1 W ( 1 ) W ( 2 ) W n + 1 W ( 1 ) W ( 2 ) W ( 1 ) W ( 2 ) W ( 1 ) = W n − ∆ t 0 ∇ · F e ( W ( 1 ) ) − ∆ t 0 ∇ · F e ( W ( 2 ) ) − ∆ t 0 ∇ · F i ( W ( 1 ) ) − ∆ t 0 ∇ · F i ( W ( 2 ) )

  25. IMEX schemes: a fjrst-order example 0 1 0 0 0 1 0 implicit 1 0 22/57 1 0 0 1 0 explicit 0 1 W ( 1 ) W ( 2 ) W n + 1 W ( 1 ) W ( 2 ) W ( 1 ) W ( 2 ) W ( 1 ) = W n − ∆ t 0 ∇ · F e ( W ( 1 ) ) − ∆ t 0 ∇ · F e ( W ( 2 ) ) − ∆ t 0 ∇ · F i ( W ( 1 ) ) − ∆ t 0 ∇ · F i ( W ( 2 ) ) W ( 2 ) = W n − ∆ t 1 ∇ · F e ( W ( 1 ) ) − ∆ t 0 ∇ · F e ( W ( 2 ) ) − ∆ t 0 ∇ · F i ( W ( 1 ) ) − ∆ t 1 ∇ · F i ( W ( 2 ) )

  26. IMEX schemes: a fjrst-order example 0 1 0 0 0 1 0 implicit 1 0 1 0 1 0 explicit 0 1 0 22/57 W ( 1 ) W ( 2 ) W n + 1 W ( 1 ) W ( 2 ) W ( 1 ) W ( 2 ) W ( 1 ) = W n − ∆ t 0 ∇ · F e ( W ( 1 ) ) − ∆ t 0 ∇ · F e ( W ( 2 ) ) − ∆ t 0 ∇ · F i ( W ( 1 ) ) − ∆ t 0 ∇ · F i ( W ( 2 ) ) W ( 2 ) = W n − ∆ t 1 ∇ · F e ( W ( 1 ) ) − ∆ t 0 ∇ · F e ( W ( 2 ) ) − ∆ t 0 ∇ · F i ( W ( 1 ) ) − ∆ t 1 ∇ · F i ( W ( 2 ) ) W n + 1 = W n − ∆ t 1 ∇ · F e ( W ( 1 ) ) − ∆ t 0 ∇ · F e ( W ( 2 ) ) − ∆ t 0 ∇ · F i ( W ( 1 ) ) − ∆ t 1 ∇ · F i ( W ( 2 ) )

  27. IMEX schemes: a fjrst-order example 0 the fjnal update is the same as the last intermediate time step: Remark : Since the weights are equal to the last row, i.e. 1 0 0 0 1 0 implicit 1 22/57 0 1 0 0 1 0 explicit 0 1 W ( 1 ) W ( 2 ) W n + 1 W ( 1 ) W ( 2 ) W ( 1 ) W ( 2 )  W ( 1 ) = W n      W ( 2 ) = W n − ∆ t ∇ · F e ( W ( 1 ) ) − ∆ t ∇ · F i ( W ( 2 ) )     W n + 1 = W n − ∆ t ∇ · F e ( W ( 1 ) ) − ∆ t ∇ · F i ( W ( 2 ) )  ˜ a 2 , l and ˜ b l = ˜ b l = ˜ a 2 , l for l ∈ { 1 , 2 } , W n + 1 = W n − ∆ t ∇ · F e ( W n ) − ∆ t ∇ · F i ( W n + 1 ) .

  28. IMEX schemes: a second-order example 0 1 explicit 0 1 To get a second-order scheme, we require additional compatibility 0 0 1 1 A simple example ( Implicit-Explicit Midpoint ) reads: implicit 0 1 2 0 0 0 1 2 0 2 23/57 s s s s conditions on the Butcher tableaux coeffjcients: ∑ ∑ ∑ ∑ ˜ ˜ b k ˜ b k ˜ b k c k = 1 2 , b k c k = 1 2 , c k = 1 2 , c k = 1 2 . k = 1 k = 1 k = 1 k = 1  W ( 1 ) = W n     W ( 2 ) = W n − 1 2 ∆ t ∇ · F e ( W ( 1 ) ) − 1 2 ∆ t ∇ · F i ( W ( 2 ) ) � � � �   2 0  W n + 1 = W n − ∆ t ∇ · F e ( W ( 2 ) ) − ∆ t ∇ · F i ( W ( 2 ) ) 

  29. IMEX schemes: a second-order example 0 1 explicit 0 To get a second-order scheme, we require additional compatibility 2 0 0 1 1 A simple example ( Implicit-Explicit Midpoint ) reads: implicit 0 1 2 0 0 0 1 2 0 1 23/57 s s s s conditions on the Butcher tableaux coeffjcients: ∑ ∑ ∑ ∑ ˜ ˜ b k ˜ b k ˜ b k c k = 1 2 , b k c k = 1 2 , c k = 1 2 , c k = 1 2 . k = 1 k = 1 k = 1 k = 1  W ∗ = W n − 1 2 ∆ t ∇ · F i ( W ∗ )  2 ∆ t ∇ · F e ( W n ) − 1  � � � �  W n + 1 = W n − ∆ t ∇ · F e ( W ∗ ) − ∆ t ∇ · F i ( W ∗ )  2 0 This scheme is not L 2 -stable!

  30. IMEX schemes: an L 2 -stable second-order example 0 0 0 1 1 implicit 0 1 0 1 0 0 0 1 1 1 1 1 0 0 1 2 1 1 0 explicit 0 24/57 0 0 0 0 √ To achieve L 2 stability, we can use the ARS(2,2,2) scheme with β = 1 − 2 : β β β β 1 − 1 − 2 ( 1 − β ) 2 ( 1 − β ) 2 β 2 β 1 − 1 − 2 β 2 β 2 ( 1 − β ) 2 ( 1 − β )  W ∗ = W n − β∆ t ∇ · F e ( W n ) − β∆ t ∇ · F i ( W ∗ )         � � W n + 1 = W n − 2 β∆ t ∇ · F e ( W ∗ ) 1 − 1 ∆ t ∇ · F e ( W n ) − 1 2 β     � �   2 ( 1 − β ) ∆ t ∇ · F i ( W ∗ ) − ∆ t ∇ · F i ( W n + 1 )  − 1 −  2 ( 1 − β )

  31. Application to the isentropic Euler equations 1 second-order in time fjrst-order in time exact solution 1 1 0 1 1 0 1 25/57 0 1 1 0 We display the density ρ ( x ) for a rarefaction-shock Riemann problem with several values of ε . ε = 10 − 1 ε = 10 − 2 1 . 1 1 . 01 1 . 05 1 . 005 0 . 2 0 . 4 0 . 6 0 . 8 0 . 2 0 . 4 0 . 6 0 . 8 1 . 001 ε = 10 − 3 1 . 0001 ε = 10 − 4 1 . 0005 1 . 00005 0 . 2 0 . 4 0 . 6 0 . 8 0 . 2 0 . 4 0 . 6 0 . 8 � We observe large oscillations when ε goes to 0!

  32. Multi-scale models and their numerical approximation A fjrst-order AP scheme for the isentropic Euler equations [Dimarco, Loubère, Vignal, ’17] High-order schemes in time and their failings [Dimarco, Loubère, M.-D., Vignal, ’18] [M.-D., Thomann, ’20] [M.-D., Thomann, in progress] Conclusion and future work “Second-order” L ∞ -stable schemes “High-order” L ∞ -stable schemes

  33. Better understand the oscillations: a model problem 0 The space discretization will be an upwind fmux. 0 1 x w n c i x w n c e t w n 1 w n and the fjrst-order AP time semi-discretization reads: cst w t w To better understand the oscillations, we consider a model problem: 0 x w 0 0 limit is obtained as follows: The 26/57 ∂ t w + c e ∂ x w + c i ε ∂ x w = 0 , c e > 0 , c i > 0 . It is a linear multi-scale advection equation, which we can write as: ∂ t w + ∂ x f e ( w ) + ∂ x f i ( w ) , f e ( w ) = c e w , f i ( w ) = c i ε w .

  34. Better understand the oscillations: a model problem To better understand the oscillations, we consider a model problem: The space discretization will be an upwind fmux. and the fjrst-order AP time semi-discretization reads: 26/57 ∂ t w + c e ∂ x w + c i ε ∂ x w = 0 , c e > 0 , c i > 0 . It is a linear multi-scale advection equation, which we can write as: ∂ t w + ∂ x f e ( w ) + ∂ x f i ( w ) , f e ( w ) = c e w , f i ( w ) = c i ε w . The ε → 0 limit is obtained as follows: ε → 0 = ⇒ ∂ x w = 0 = ⇒ ∂ t w = 0 = ⇒ w = cst , w n + 1 − w n + c e ∂ x w n + c i ε ∂ x w n + 1 = 0 . ∆ t

  35. t depends on , there are no implicit Runge-Kutta 27/57 no oscillations stability fails. Next step : Try to understand how the L 1 that are L -stable! discretizations of order unless Obstruction : A theorem [Gottlieb, Shu, Tadmor, ’01] states that, First idea : Derive a L -stable second-order IMEX discretization. decrease over time; at the discrete level, we wish to get j j and Better understand the oscillations: L ∞ stability failure The oscillations are measured by the L ∞ norm and the total variation: TV = � ∑ ∥ w n ∥ ∞ = max | w n j | TV ( w n ) = | w n j + 1 − w n j | . At the continuous level, the L ∞ norm and the total variation { L ∞ stability: ∥ w n + 1 ∥ ∞ � ∥ w n ∥ ∞ , ⇐ ⇒ total variation diminishing: TV ( w n + 1 ) � TV ( w n ) .

  36. 27/57 j Obstruction : A theorem [Gottlieb, Shu, Tadmor, ’01] states that, j no oscillations decrease over time; at the discrete level, we wish to get and Better understand the oscillations: L ∞ stability failure The oscillations are measured by the L ∞ norm and the total variation: TV = � ∑ ∥ w n ∥ ∞ = max | w n j | TV ( w n ) = | w n j + 1 − w n j | . At the continuous level, the L ∞ norm and the total variation { L ∞ stability: ∥ w n + 1 ∥ ∞ � ∥ w n ∥ ∞ , ⇐ ⇒ total variation diminishing: TV ( w n + 1 ) � TV ( w n ) . First idea : Derive a L ∞ -stable second-order IMEX discretization. unless ∆ t depends on ε , there are no implicit Runge-Kutta discretizations of order > 1 that are L ∞ -stable! Next step : Try to understand how the L ∞ stability fails.

  37. Generic stability proof for an IMEX step j . c i c e 1 j j j w n j Rearranging the terms, we get: 28/57 w n j j An idealized IMEX step for the model problem, with weights α and β , is: w n + 1 w n + 1 − w n + 1 − w n j − w n j − 1 j − 1 + β c e + α c i = 0 . ∆ t ∆ x ε ∆ x ∆ t ∆ t � � � � w n + 1 w n + 1 − w n + 1 = w n j − β c e j − w n − α c i . j − 1 j − 1 ∆ x ε ∆ x ∆ t ∆ x and λ = β c e ∆ t Introducing µ ε = α c i ε ∆ x , the scheme reads: w n + 1 j − 1 − µ ε ( w n + 1 − w n + 1 = ( 1 − λ ) w n j + λ w n j − 1 ) . Next step : Derive conditions on µ ε and λ such that the IMEX step is L ∞ -stable, assuming periodic boundary conditions. ⇒ ∆ t � ∆ x ⇒ ∆ t � ∆ x ε Remark : λ � 1 ⇐ and µ ε � 1 ⇐ β α

  38. 1 if 1 1 since x 1 using the time update of the scheme 1 if 1 Generic stability proof for an IMEX step w n j 1 j 1 w n j 1 j 1 w n y x y since x 1 j 1 w n 1 j 1 j j 1 w n j 0 0 and j 1 w n j 1 1 w n j 1 1 j 1 w n j j j w n j 1 w n 1 j 0 1 and 0 i.e. w n j j j w n 1 j j j j w n j 1 j j 1 w n j j w n 1 1 y x y j w n j w n 1 29/57 max | w n j | = ( 1 − λ ) max | w n j | + λ max | w n j − 1 |

  39. 1 since x 1 using the time update of the scheme 1 if 1 Generic stability proof for an IMEX step w n j 1 j 1 w n j 1 j 1 w n y x y since x 1 j 1 1 j 1 j j 1 w n j 0 0 and j 1 w n j j 1 w n j 1 1 j 1 w n j w n w n 1 j j j j j j j 1 w n j w n 1 j 1 w n j w n j 1 j j 1 j w n 29/57 1 y 1 j x w n y max | w n j | = ( 1 − λ ) max | w n j | + λ max | w n j − 1 | = max | ( 1 − λ ) w n j | + max | λ w n j − 1 | if 1 − λ � 0 i.e. λ � 1 and λ � 0

  40. 1 since x 1 using the time update of the scheme 1 if 1 Generic stability proof for an IMEX step j 1 j 1 j 1 w n w n 1 1 1 j y x y since x 1 w n j j w n j 1 w n j 0 0 and j 1 j 1 j 1 w n j 1 1 j 1 w n j j w n x j j j j j 1 w n j w n j y j y j 1 w n 1 j j 1 w n 1 w n 1 j 29/57 max | w n j | = ( 1 − λ ) max | w n j | + λ max | w n j − 1 | = max | ( 1 − λ ) w n j | + max | λ w n j − 1 | if 1 − λ � 0 i.e. λ � 1 and λ � 0 = max j ( | ( 1 − λ ) w n j | + | λ w n j − 1 | )

  41. 1 using the time update of the scheme 1 if 1 Generic stability proof for an IMEX step w n 1 w n 1 j 1 j 1 1 j j w n 1 j y x y j w n 1 1 j 1 w n j 0 0 and j w n 1 j j 1 w n j 1 1 j since x 1 j 1 j j j j j j j 1 w n 29/57 j w n w n j 1 w n 1 j 1 j max | w n j | = ( 1 − λ ) max | w n j | + λ max | w n j − 1 | = max | ( 1 − λ ) w n j | + max | λ w n j − 1 | if 1 − λ � 0 i.e. λ � 1 and λ � 0 = max j ( | ( 1 − λ ) w n j | + | λ w n j − 1 | ) | ( 1 − λ ) w n j + λ w n j − 1 | since | x | + | y | � | x + y | � max

  42. 1 if 1 Generic stability proof for an IMEX step 1 j 1 w n 1 j 1 j w n w n j 1 w n 1 j y x j 1 since x 1 j 1 w n j 0 0 and j w n j j j 1 w n j 1 1 y 1 29/57 j j j j j j j j j 1 w n 1 j w n 1 j max | w n j | = ( 1 − λ ) max | w n j | + λ max | w n j − 1 | = max | ( 1 − λ ) w n j | + max | λ w n j − 1 | if 1 − λ � 0 i.e. λ � 1 and λ � 0 = max j ( | ( 1 − λ ) w n j | + | λ w n j − 1 | ) | ( 1 − λ ) w n j + λ w n j − 1 | since | x | + | y | � | x + y | � max | ( 1 + µ ε ) w n + 1 − µ ε w n + 1 = max j − 1 | using the time update of the scheme

  43. 1 if 1 Generic stability proof for an IMEX step j w n j j 1 w n 1 1 j j 1 w n j 1 w n 1 1 j j j 1 w n j 0 0 and 1 1 w n j j 1 w n j 1 29/57 j j j j j j j j j j max | w n j | = ( 1 − λ ) max | w n j | + λ max | w n j − 1 | = max | ( 1 − λ ) w n j | + max | λ w n j − 1 | if 1 − λ � 0 i.e. λ � 1 and λ � 0 = max j ( | ( 1 − λ ) w n j | + | λ w n j − 1 | ) | ( 1 − λ ) w n j + λ w n j − 1 | since | x | + | y | � | x + y | � max | ( 1 + µ ε ) w n + 1 − µ ε w n + 1 = max j − 1 | using the time update of the scheme || ( 1 + µ ε ) w n + 1 | − | µ ε w n + 1 � max j − 1 || since | x − y | � || x | − | y ||

  44. 1 if 1 Generic stability proof for an IMEX step j j j 1 w n 1 j j w n 1 j 1 1 w n j 1 j j w n 1 j 0 and 0 j w n 1 j j 29/57 j j j j j j j j max | w n j | = ( 1 − λ ) max | w n j | + λ max | w n j − 1 | = max | ( 1 − λ ) w n j | + max | λ w n j − 1 | if 1 − λ � 0 i.e. λ � 1 and λ � 0 = max j ( | ( 1 − λ ) w n j | + | λ w n j − 1 | ) | ( 1 − λ ) w n j + λ w n j − 1 | since | x | + | y | � | x + y | � max | ( 1 + µ ε ) w n + 1 − µ ε w n + 1 = max j − 1 | using the time update of the scheme || ( 1 + µ ε ) w n + 1 | − | µ ε w n + 1 � max j − 1 || since | x − y | � || x | − | y || j ( | ( 1 + µ ε ) w n + 1 | − | µ ε w n + 1 � max j − 1 | )

  45. 1 if 1 Generic stability proof for an IMEX step j j j j j j 1 j w n 1 j j w n 1 j 0 and 0 j w n 1 j j j 29/57 j j j j j j max | w n j | = ( 1 − λ ) max | w n j | + λ max | w n j − 1 | = max | ( 1 − λ ) w n j | + max | λ w n j − 1 | if 1 − λ � 0 i.e. λ � 1 and λ � 0 = max j ( | ( 1 − λ ) w n j | + | λ w n j − 1 | ) | ( 1 − λ ) w n j + λ w n j − 1 | since | x | + | y | � | x + y | � max | ( 1 + µ ε ) w n + 1 − µ ε w n + 1 = max j − 1 | using the time update of the scheme || ( 1 + µ ε ) w n + 1 | − | µ ε w n + 1 � max j − 1 || since | x − y | � || x | − | y || j ( | ( 1 + µ ε ) w n + 1 | − | µ ε w n + 1 � max j − 1 | ) | ( 1 + µ ε ) w n + 1 | µ ε w n + 1 � max | − max j − 1 |

  46. Generic stability proof for an IMEX step j j j j j j j j j j j j w n 1 j j 29/57 j j j j j max | w n j | = ( 1 − λ ) max | w n j | + λ max | w n j − 1 | = max | ( 1 − λ ) w n j | + max | λ w n j − 1 | if 1 − λ � 0 i.e. λ � 1 and λ � 0 = max j ( | ( 1 − λ ) w n j | + | λ w n j − 1 | ) | ( 1 − λ ) w n j + λ w n j − 1 | since | x | + | y | � | x + y | � max | ( 1 + µ ε ) w n + 1 − µ ε w n + 1 = max j − 1 | using the time update of the scheme || ( 1 + µ ε ) w n + 1 | − | µ ε w n + 1 � max j − 1 || since | x − y | � || x | − | y || j ( | ( 1 + µ ε ) w n + 1 | − | µ ε w n + 1 � max j − 1 | ) | ( 1 + µ ε ) w n + 1 | µ ε w n + 1 � max | − max j − 1 | | w n + 1 | w n + 1 = ( 1 + µ ε ) max | − µ ε max j − 1 | if 1 + µ ε � 0 and µ ε � 0

  47. Generic stability proof for an IMEX step j j j j j j j j j j j j j j 29/57 j j j j j max | w n j | = ( 1 − λ ) max | w n j | + λ max | w n j − 1 | = max | ( 1 − λ ) w n j | + max | λ w n j − 1 | if 1 − λ � 0 i.e. λ � 1 and λ � 0 = max j ( | ( 1 − λ ) w n j | + | λ w n j − 1 | ) | ( 1 − λ ) w n j + λ w n j − 1 | since | x | + | y | � | x + y | � max | ( 1 + µ ε ) w n + 1 − µ ε w n + 1 = max j − 1 | using the time update of the scheme || ( 1 + µ ε ) w n + 1 | − | µ ε w n + 1 � max j − 1 || since | x − y | � || x | − | y || j ( | ( 1 + µ ε ) w n + 1 | − | µ ε w n + 1 � max j − 1 | ) | ( 1 + µ ε ) w n + 1 | µ ε w n + 1 � max | − max j − 1 | | w n + 1 | w n + 1 = ( 1 + µ ε ) max | − µ ε max j − 1 | if 1 + µ ε � 0 and µ ε � 0 | w n + 1 = max |

  48. 1 is 1 . 1 from the fjrst step into the second one: 2 w j 1 w n 1 1 2 1 1 j Instability of the ARS(2,2,2) scheme w n 1 w j w j 2. Inject 1 0 and 0 1. The fjrst step is L -stable if j j 1 2 1 stability! loss of L 0 j 1, so the coeffjcient of w n We have 1 j w n 1 j 1 w n 2 1 2 1 1 w j 2 1 30/57 c i j 2 √ 2 , λ = ∆ t ∆ x c e and µ ε = ∆ t Recall the ARS(2,2,2) discretization, with β = 1 − ∆ x ε :  w ∗ j − 1 ) − βµ ε ( w ∗ j − w ∗  j = w n j − βλ ( w n j − w n j − 1 ) ,        � � w n + 1 2 βλ ( w ∗ j − w ∗ = w n j − 1 − 1 λ ( w n j − w n j − 1 ) − 1 j − 1 ) 2 β      � �  2 ( 1 − β ) µ ε ( w ∗ j − w ∗ µ ε ( w n + 1 − w n + 1  − j − 1 ) − 1 − j − 1 ) .  2 ( 1 − β )

  49. 1 is 1 from the fjrst step into the second one: 2 w j 1 2 1 j w n 1 1 2 Instability of the ARS(2,2,2) scheme 1 1 1 w n w j w j 2. Inject j j w j 2 j stability! loss of L 0 j 1, so the coeffjcient of w n We have 1 1 1 w n j 1 w n 2 1 2 1 1 1 30/57 j 2 c i √ 2 , λ = ∆ t ∆ x c e and µ ε = ∆ t Recall the ARS(2,2,2) discretization, with β = 1 − ∆ x ε :  w ∗ j − 1 − βµ ε ( w ∗ j − w ∗  j = ( 1 − βλ ) w n j + βλ w n j − 1 ) ,        � � w n + 1 2 βλ ( w ∗ j − w ∗ = w n j − 1 − 1 λ ( w n j − w n j − 1 ) − 1 j − 1 ) 2 β      � �  2 ( 1 − β ) µ ε ( w ∗ j − w ∗ µ ε ( w n + 1 − w n + 1  − j − 1 ) − 1 − j − 1 ) .  2 ( 1 − β ) ⇒ λ � 1 1. The fjrst step is L ∞ -stable if βµ ε > 0 and 0 � βλ � 1 = β .

  50. 1 is Instability of the ARS(2,2,2) scheme 1 1 j j 1 w n We have j j 1, so the coeffjcient of w n j 0 loss of L stability! 1 30/57 2 c i √ 2 , λ = ∆ t ∆ x c e and µ ε = ∆ t Recall the ARS(2,2,2) discretization, with β = 1 − ∆ x ε :  w ∗ j − 1 − βµ ε ( w ∗ j − w ∗  j = ( 1 − βλ ) w n j + βλ w n j − 1 ) ,        � � w n + 1 2 βλ ( w ∗ j − w ∗ = w n j − 1 − 1 λ ( w n j − w n j − 1 ) − 1 j − 1 ) 2 β      � �  2 ( 1 − β ) µ ε ( w ∗ j − w ∗ µ ε ( w n + 1 − w n + 1  − j − 1 ) − 1 − j − 1 ) .  2 ( 1 − β ) ⇒ λ � 1 1. The fjrst step is L ∞ -stable if βµ ε > 0 and 0 � βλ � 1 = β . 2. Inject µ ε ( w ∗ j − w ∗ j − 1 ) from the fjrst step into the second one: � � 2 β ( 1 − β ) + λ 1 − β j + β − 1 w n + 1 = 1 − λ w n j − 1 β β � � 2 β ( 1 − β ) − λ j + λ j − 1 + 1 − 2 β 2 ( 1 − β ) µ ε ( w n + 1 − w n + 1 w ∗ 2 β w ∗ + j − 1 ) . 2 β

  51. Instability of the ARS(2,2,2) scheme j j 1 w n 1 j j 1 1 30/57 2 c i √ 2 , λ = ∆ t ∆ x c e and µ ε = ∆ t Recall the ARS(2,2,2) discretization, with β = 1 − ∆ x ε :  w ∗ j − 1 − βµ ε ( w ∗ j − w ∗  j = ( 1 − βλ ) w n j + βλ w n j − 1 ) ,        � � w n + 1 2 βλ ( w ∗ j − w ∗ = w n j − 1 − 1 λ ( w n j − w n j − 1 ) − 1 j − 1 ) 2 β      � �  2 ( 1 − β ) µ ε ( w ∗ j − w ∗ µ ε ( w n + 1 − w n + 1  − j − 1 ) − 1 − j − 1 ) .  2 ( 1 − β ) ⇒ λ � 1 1. The fjrst step is L ∞ -stable if βµ ε > 0 and 0 � βλ � 1 = β . 2. Inject µ ε ( w ∗ j − w ∗ j − 1 ) from the fjrst step into the second one: � � 2 β ( 1 − β ) + λ 1 − β j + β − 1 w n + 1 = 1 − λ w n j − 1 β β � � 2 β ( 1 − β ) − λ j + λ j − 1 + 1 − 2 β 2 ( 1 − β ) µ ε ( w n + 1 − w n + 1 w ∗ 2 β w ∗ + j − 1 ) . 2 β We have β < 1, so the coeffjcient of w n j − 1 is � 0 � loss of L ∞ stability!

  52. A convex combination 1 w j 1 1 2 1 w j w j 1 1 1 2 1 w n 1 j w n j 2 w n 1 j 1 w n j 1 1 1 1 j w n j w n 1 w j 1 31/57 1 The full scheme reads as follows: w j w n j w n j w n j 1 w j w j 1 w n 2 j 1 j w n w n 1 1 j w n j The second step w n + 1 , o2 of the ARS(2,2,2) scheme is not L ∞ -stable. To address this issue, we introduce a convex combination between the second step and the fjrst-order scheme w n + 1 , o1 : { order 1, difgusive and stable, if θ = 0 , w n + 1 = θ w n + 1 , o2 + ( 1 − θ ) w n + 1 , o1 ⇒ = order 2, accurate and unstable, if θ = 1 .

  53. A convex combination The full scheme reads as follows: j j 1 1 j 31/57 The second step w n + 1 , o2 of the ARS(2,2,2) scheme is not L ∞ -stable. To address this issue, we introduce a convex combination between the second step and the fjrst-order scheme w n + 1 , o1 : { order 1, difgusive and stable, if θ = 0 , w n + 1 = θ w n + 1 , o2 + ( 1 − θ ) w n + 1 , o1 ⇒ = order 2, accurate and unstable, if θ = 1 .   w ∗ j − 1 ) − βµ ε ( w ∗ j − w ∗ j = w n j − βλ ( w n j − w n j − 1 ) ,        � �   w n + 1 2 βλ ( w ∗ j − w ∗  = w n j − θ 1 − 1 λ ( w n j − w n j − 1 ) − θ 1 j − 1 )   2 β � �   2 ( 1 − β ) µ ε ( w ∗ j − w ∗ µ ε ( w n + 1 − w n + 1 − θ j − 1 ) − θ 1 − j − 1 )    2 ( 1 − β )       j − 1 ) − ( 1 − θ ) µ ε ( w n + 1 − w n + 1  − ( 1 − θ ) λ ( w n j − w n j − 1 ) . 

  54. 32/57 Corollary : If 1 2 opt 1 1 1 1 0 , the conditions are relaxed: 1 2 opt c e Applying the TVD proof to the convex combination scheme yields: 2 Determination of θ Next step : Determine the largest θ that ensures the L ∞ stability. Theorem : The convex combination scheme is L ∞ -stable if: 0 < β < 1 , λ � 1 , θ � 2 β ( 1 − β ) . √ Remark : We are no longer constrained by the L 2 condition β = 1 − 2 . ⇒ ∆ t ⇒ ∆ t � ∆ x Remark : λ � 1 ⇐ ∆ xc e � 1 ⇐ is a CFL condition

  55. 32/57 2 Applying the TVD proof to the convex combination scheme yields: 1 c e Determination of θ Next step : Determine the largest θ that ensures the L ∞ stability. Theorem : The convex combination scheme is L ∞ -stable if: 0 < β < 1 , λ � 1 , θ � 2 β ( 1 − β ) . √ Remark : We are no longer constrained by the L 2 condition β = 1 − 2 . ⇒ ∆ t ⇒ ∆ t � ∆ x Remark : λ � 1 ⇐ ∆ xc e � 1 ⇐ is a CFL condition Corollary : If θ = θ opt = 2 β ( 1 − β ) , the conditions are relaxed: � 1 � θ = θ opt = 2 β ( 1 − β ) . 0 < β < 1 , λ � min β, , 1 − β

  56. Numerical results with ARS(2,2,2) 1 0005 w 10 1 0 0 25 0 5 0 75 1 1 1 001 1 1 x w 10 3 exact solution fjrst-order second-order convex combination Question : Do we have to use the convex combination at every time step ? x 1 05 33/57 1 1 0 75 0 5 0 25 0 2 otherwise. 1 1 We check the new scheme with the ARS(2,2,2) value of β : √ β = 1 − λ = 1 − β ≃ 1 . 414, θ = 2 β ( 1 − β ) ≃ 0 . 414. 2 , For x ∈ ( 0 , 1 ) , we take a step function as initial condition: { 1 + ε if x ∈ ( 0 . 25 , 0 . 75 ) , w 0 ( x ) = we set c e = c i = 1, t end = ε/ ( 1 + ε ) , and we prescribe periodic BC.

  57. Numerical results with ARS(2,2,2) 0 Question : Do we have to use the convex combination at every time step ? convex combination second-order fjrst-order exact solution w x 1 1 0 w x 1 1 otherwise. 1 2 33/57 1 We check the new scheme with the ARS(2,2,2) value of β : √ β = 1 − λ = 1 − β ≃ 1 . 414, θ = 2 β ( 1 − β ) ≃ 0 . 414. 2 , For x ∈ ( 0 , 1 ) , we take a step function as initial condition: { 1 + ε if x ∈ ( 0 . 25 , 0 . 75 ) , w 0 ( x ) = we set c e = c i = 1, t end = ε/ ( 1 + ε ) , and we prescribe periodic BC. 1 . 1 1 . 001 1 . 05 1 . 0005 ε = 10 − 1 ε = 10 − 3 0 . 25 0 . 5 0 . 75 0 . 25 0 . 5 0 . 75

  58. MOOD procedure 2 nd -order scheme combination the convex compute Remark : The convex combination removes the oscillations but the detection of oscillations using the approximation w c compute a candidate w n (Multidimensional Optimal Order Detection). approximation remains difgusive. 34/57 � Increase the resolution using the MOOD framework w n + 1 = w c no w n + 1 w n + 1 with yes Figure above : MOOD method for one time step (compute w n + 1 from w n )

  59. 1 with the 2 nd -order scheme and check Detection of oscillations for the model problem 1 bounds are not violated. The 2 nd -order solution is used as soon the initial Consequence : bounds of the initial condition. We know that the numerical solution should not leave the Why? . w 0 whether w n How to detect oscillations? 2. Second idea : Compute w n tion is smooth. Consequence : The 2 nd -order scheme is never used, unless the solu- 1. First idea : 35/57 Compute w n + 1 with the 2 nd -order scheme and check whether ∥ w n + 1 ∥ ∞ � ∥ w n ∥ ∞ . Problem : If the w n is not smooth enough, the 2 nd -order solution w n + 1 will always violate the L ∞ stability.

  60. Detection of oscillations for the model problem How to detect oscillations? bounds are not violated. The 2 nd -order solution is used as soon the initial Consequence : bounds of the initial condition. We know that the numerical solution should not leave the Why? 35/57 tion is smooth. Consequence : The 2 nd -order scheme is never used, unless the solu- 1. First idea : Compute w n + 1 with the 2 nd -order scheme and check whether ∥ w n + 1 ∥ ∞ � ∥ w n ∥ ∞ . Problem : If the w n is not smooth enough, the 2 nd -order solution w n + 1 will always violate the L ∞ stability. 2. Second idea : Compute w n + 1 with the 2 nd -order scheme and check whether ∥ w n + 1 ∥ ∞ � ∥ w 0 ∥ ∞ .

  61. Numerical results with ARS(2,2,2) and the MOOD procedure 0 MOOD convex combination 2 nd -order 1 st -order exact solution w x 1 1 0 w x 1 1 otherwise. 1 2 1 36/57 We check the new scheme with the ARS(2,2,2) value of β : √ β = 1 − λ = 1 − β ≃ 1 . 414, θ = 2 β ( 1 − β ) ≃ 0 . 414. 2 , For x ∈ ( 0 , 1 ) , we take a step function as initial condition: { if x ∈ ( 0 . 25 , 0 . 75 ) , w 0 ( x ) = 1 + ε we set c e = c i = 1, t end = ε/ ( 1 + ε ) , and we prescribe periodic BC. 1 . 1 1 . 001 1 . 05 1 . 0005 ε = 10 − 1 ε = 10 − 3 0 . 25 0 . 5 0 . 75 0 . 25 0 . 5 0 . 75 Question : Can we fjnd a “better” value of β ?

  62. 37/57 , 2 1 1 0 0 1 0 1 Optimizing the value of β We know that the convex combination scheme is L ∞ -stable if � 1 � λ = λ opt = min θ = θ opt = 2 β ( 1 − β ) . 0 < β < 1, β, 1 − β � How to choose the “best” β ∈ ( 0 , 1 ) ? Remark on the relationship between λ opt , θ opt and β : • λ opt ↗ ⇐ ⇒ less restrictive CFL condition ⇐ ⇒ CPU time ↘ • θ opt ↗ ⇐ ⇒ scheme closer to second-order ⇐ ⇒ precision ↗ θ opt λ opt 0 . 5 0 . 4 0 . 3 1 . 5 0 . 2 0 . 1 β β 0 . 5 0 . 5

  63. 38/57 4 MOOD 0 convex 2 nd -order 1 st -order CPU time (ms) 1 2 3 Optimizing the value of β We plot the CPU time with respect to β ∈ ( 0 , 1 ) (when approximating the advection of a smooth initial condition with ε = 0 . 1). β 0 . 2 0 . 4 0 . 6 0 . 8 • We note that, indeed, λ opt ↗ = ⇒ CPU time ↘ . • Something happens around β = 1 2 : let us look at the L ∞ error. �

  64. 39/57 0 ARS(2,2,2) is a good compromise between CPU time and error. 2 MOOD convex 2 nd -order 1 st -order 0 2 1 0 1 Optimizing the value of β We plot the L ∞ error with respect to β ∈ ( 0 , 1 ) (when approximating the advection of a smooth initial condition with ε = 0 . 1). L ∞ -error (%) L ∞ -error (%) 1 . 9 1 . 8 1 . 7 β 1 . 5 0 . 2 0 . 4 L ∞ -error (%) 0 . 5 0 . 3 β 0 . 25 β 0 . 5 0 . 2 0 . 4 ⇒ the second-order scheme is not L 2 -stable anymore • β > 1 � 2 = √ • The error of the convex combination is actually minimal for β = 1 − 2 !

  65. Second-order accuracy in space: smooth solution 1 MOOD convex 2 nd -order 1 st -order N 1 2 1 16000 8000 4000 2000 1000 The second-order accuracy in space is achieved in a classical way: N 2 40 • for the second-order scheme : • for the convex combination scheme : 10 1 20 80 160 40/57 ◮ MUSCL reconstruction on the explicit fmux, ◮ BDF2 discretization on the implicit fmux; ◮ limited MUSCL reconstruction on the explicit fmux; ◮ fjrst-order on the implicit fmux (to conserve L ∞ stability). L ∞ -error, ε = 1 L ∞ -error, ε = 10 − 3 10 − 1 10 − 4 10 − 2 10 − 5 10 − 3 Figure above : error lines in L ∞ norm for a smooth solution

  66. Second-order accuracy in space: discontinuous solution 0.5 6000 3000 1500 L 1 N 1 160 24000 80 40 20 The error on a discontinuous solution is measured with: N 1 12000 0.5 160 1 MOOD convex 2 nd -order 1 st -order L 1 N 0.5 1 24000 12000 6000 3000 1500 N 0.5 10 80 j j j w m j w m j w 0 j w 0 j 41/57 10 40 20 ∑ � �� � � ��� ∥ w n ∥ L 1 o = 1 | w n j | + max max j − min − max j − min , ∆ x m � n constructed by adding overshoots and undershoots to the L 1 norm. L 1 -error, ε = 1 o -error, ε = 1 0 . 8 0 . 8 0 . 4 0 . 4 0 . 2 0 . 2 0 . 1 0 . 1 L 1 -error, ε = 10 − 3 o -error, ε = 10 − 3 0 . 8 0 . 4 0 . 4 0 . 2 0 . 2 0 . 1 0 . 1

  67. Application to the Euler equations Recall the fjrst-order IMEX scheme for the Euler system: We apply the same convex combination procedure : 42/57  ρ n + 1 , o1 − ρ n + ∇ · ( ρ u ) n + 1 , o1 = 0 ,   ( 1 )   ∆ t ( ρ u ) n + 1 , o1 − ( ρ u ) n   + ∇ · ( ρ u ⊗ u ) n + 1  ε ∇ p ( ρ n + 1 , o1 ) = 0 . ( 2 )  ∆ t W n + 1 , cc = θ W n + 1 , o2 + ( 1 − θ ) W n + 1 , o1 , with θ = 2 β ( 1 − β ) . � We use the value of θ given by the study of the model problem. � But how can we detect oscillations for the MOOD procedure?

  68. Application to the Euler equations: detection of oscillations : at the same time; 2. detect if both Riemann invariants break the maximum principle MOOD algorithm: to compute the time update of W n , one of them satisfjes a maximum principle in a Riemann problem. 43/57 2 The previous detector ( L ∞ criterion on W ) is irrelevant for the Euler equations, since ρ and u do not satisfy a maximum principle. � We need another detection criterion! � γρ γ − 1 We pick the Riemann invariants Φ ± = u ∓ γ − 1 ε 1. compute the candidate order 2 approximation W n + 1 , o2 ; 3. if so, compute the convex combination W n + 1 , cc .

  69. Application to the Euler equations: numerical results in 1D 1 exact x 1 1 0 x 1 1 We consider a Riemann problem (left rarefaction wave and right shock). 0 x 1 44/57 2 1 0 x 0 1 ρ ρ u 1 . 5 1 . 5 ε = 1 ε = 1 0 . 2 0 . 4 0 . 6 0 . 8 0 . 2 0 . 4 0 . 6 0 . 8 ρ ρ u 1 . 009 1 . 0001 ε = 10 − 4 1 . 006 1 . 00005 ε = 10 − 4 1 . 003 0 . 2 0 . 4 0 . 6 0 . 8 0 . 2 0 . 4 0 . 6 0 . 8

  70. Application to the Euler equations: numerical results in 1D 1 1st order exact x 1 1 0 x 1 1 We consider a Riemann problem (left rarefaction wave and right shock). 0 x 1 44/57 1 2 0 0 1 x ρ ρ u 1 . 5 1 . 5 ε = 1 ε = 1 0 . 2 0 . 4 0 . 6 0 . 8 0 . 2 0 . 4 0 . 6 0 . 8 ρ ρ u 1 . 009 1 . 0001 ε = 10 − 4 1 . 006 1 . 00005 ε = 10 − 4 1 . 003 0 . 2 0 . 4 0 . 6 0 . 8 0 . 2 0 . 4 0 . 6 0 . 8

  71. Application to the Euler equations: numerical results in 1D 1 2nd order 1st order exact x 1 1 0 x 1 1 We consider a Riemann problem (left rarefaction wave and right shock). 0 x 1 44/57 1 0 2 x 1 0 ρ ρ u 1 . 5 1 . 5 ε = 1 ε = 1 0 . 2 0 . 4 0 . 6 0 . 8 0 . 2 0 . 4 0 . 6 0 . 8 ρ ρ u 1 . 009 1 . 0001 ε = 10 − 4 1 . 006 1 . 00005 ε = 10 − 4 1 . 003 0 . 2 0 . 4 0 . 6 0 . 8 0 . 2 0 . 4 0 . 6 0 . 8

  72. Application to the Euler equations: numerical results in 1D 0 x 0 We consider a Riemann problem (left rarefaction wave and right shock). 1 1 x 1 1 1 x exact 1st order 2nd order convex combination 1 44/57 1 0 2 x 1 0 ρ ρ u 1 . 5 1 . 5 ε = 1 ε = 1 0 . 2 0 . 4 0 . 6 0 . 8 0 . 2 0 . 4 0 . 6 0 . 8 ρ ρ u 1 . 009 1 . 0001 ε = 10 − 4 1 . 006 1 . 00005 ε = 10 − 4 1 . 003 0 . 2 0 . 4 0 . 6 0 . 8 0 . 2 0 . 4 0 . 6 0 . 8

  73. Application to the Euler equations: numerical results in 1D 0 x 0 We consider a Riemann problem (left rarefaction wave and right shock). 1 1 x 1 1 1 x exact 1st order 2nd order convex combination MOOD 1 44/57 2 0 1 1 x 0 ρ ρ u 1 . 5 1 . 5 ε = 1 ε = 1 0 . 2 0 . 4 0 . 6 0 . 8 0 . 2 0 . 4 0 . 6 0 . 8 ρ ρ u 1 . 009 1 . 0001 ε = 10 − 4 1 . 006 1 . 00005 ε = 10 − 4 1 . 003 0 . 2 0 . 4 0 . 6 0 . 8 0 . 2 0 . 4 0 . 6 0 . 8

  74. Application to the Euler equations: numerical results in 2D 0 4 6 0 2 4 6 2nd-order AP 0 2 4 6 2 0 4 6 TVD-AP 0 2 4 6 0 2 4 6 AP-MOOD 2 1st-order AP 0 6 2 4 6 0 2 4 6 reference 0 4 2 Reference solution obtained solving the vorticity formulation 0 2 4 6 0 2 4 45/57 − 4 − 2 ∂ t ω + u · ∇ ω = 0, with ω = ∂ x u 1 − ∂ y u 2 ; we take ε = 10 − 5 .

  75. Application to the Euler equations: numerical results in 2D 0 4 6 0 2 4 6 2nd-order AP 0 2 4 6 2 0 4 6 TVD-AP 0 2 4 6 0 2 4 6 AP-MOOD 2 1st-order AP 0 6 2 4 6 0 2 4 6 reference 0 4 2 Reference solution obtained solving the vorticity formulation 0 2 4 6 0 2 4 46/57 − 4 − 2 ∂ t ω + u · ∇ ω = 0, with ω = ∂ x u 1 − ∂ y u 2 ; we take ε = 10 − 5 .

  76. Multi-scale models and their numerical approximation A fjrst-order AP scheme for the isentropic Euler equations [Dimarco, Loubère, Vignal, ’17] High-order schemes in time and their failings [Dimarco, Loubère, M.-D., Vignal, ’18] [M.-D., Thomann, ’20] [M.-D., Thomann, in progress] Conclusion and future work “Second-order” L ∞ -stable schemes “High-order” L ∞ -stable schemes

  77. Problem statement . 0 Goal : Derive a convex combination based on higher order IMEX schemes, b 1 b s c 1 0 0 c 2 0 . . . . . . ... ... . . . c s b 1 b s Question : How to choose all the coeffjcients? We start with a third-order scheme. c s 47/57 . . still considering the model problem with an upwind space discretization. The Butcher tableaux read: Explicit part Implicit part c 1 0 0 0 c 2 0 . . 0 . . . ... ... . ˜ · · · · · · a 1 , 1 ˜ ˜ . . . . . . a 2 , 1 a 2 , 1 a 2 , 2 ˜ ˜ . . . ˜ . . . a s , 1 a s , s − 1 a s , 1 a s , s − 1 a s , s ˜ ˜ . . . . . . . . . . . .

  78. A third-order example 0 b 2 b 3 implicit 0 c 2 c 3 0 0 0 0 0 0 To get relationships between the coeffjcients, we use: • the fjrst-order consistency conditions, Let us consider the following Butcher tableaux. 0 48/57 0 0 b 2 b 3 explicit 0 c 3 c 2 0 0 0 0 ˜ a 2 , 2 a 2 , 1 ˜ ˜ a 3 , 2 a 3 , 3 a 3 , 1 a 3 , 2 • the second-order compatibility conditions, • the third-order compatibility conditions (not detailed here).

  79. A third-order example 2 0 0 0 0 1 implicit 0 0 0 0 0 0 0 0 2 Consequence : We need a convex combination at each sub-step. 0 49/57 0 1 3 . 0 0 2 explicit { } We obtain the following Butcher tableaux, for γ / ∈ 0 , 1 3 γ − 1 3 γ − 1 3 γ − 1 3 γ − 1 6 γ 6 γ 6 γ 6 γ − 6 γ 3 − 3 γ 2 + 1 γ ( 3 γ 2 + 1 ) γ + 1 γ + 1 1 − γ γ 2 ( 3 γ − 1 ) 3 γ − 1 3 γ 2 3 γ 2 3 γ 2 + 1 3 γ 2 + 1 3 γ 2 + 1 3 γ 2 + 1 Applying the L ∞ stability proof, we show that the second step is not L ∞ -stable!

  80. With a convex combination at each sub-step, we get: k t F e W n l k t F i W n l k c k t F e W n k c k t F i W n k 1 t F e W n k 1 t F i W n k F e W n F i W n s 1 s W n W n 1 k The convex combination for an s -step scheme 1 b k s k 1 b k 1 s 1 t 1 s 1 t 1 s 1 1 W n k s a k l k 1 s W n k s k k The classical high-order IMEX scheme reads: 1 l 50/57 a k l l 1 k − 1 ∑ ∑ ∀ k ∈ � 1 , s � , W n , k = W n − ∆ t a k , l ∇ · F e ( W n , l ) − ∆ t a k , l ∇ · F i ( W n , l ) , ˜ l = 1 l = 1 ∑ ∑ W n + 1 = W n − ∆ t ˜ b k ∇ · F e ( W n , k ) − ∆ t b k ∇ · F i ( W n , k ) . k = 1 k = 1

  81. The convex combination for an s -step scheme s s s k The classical high-order IMEX scheme reads: s 50/57 k k − 1 ∑ ∑ ∀ k ∈ � 1 , s � , W n , k = W n − ∆ t a k , l ∇ · F e ( W n , l ) − ∆ t a k , l ∇ · F i ( W n , l ) , ˜ l = 1 l = 1 ∑ ∑ W n + 1 = W n − ∆ t ˜ b k ∇ · F e ( W n , k ) − ∆ t b k ∇ · F i ( W n , k ) . k = 1 k = 1 With a convex combination at each sub-step, we get: k − 1 ∑ ∑ ∀ k ∈ � 1 , s � , W n , k = W n − θ k ∆ t a k , l ∇ · F e ( W n , l ) − θ k ∆ t a k , l ∇ · F i ( W n , l ) ˜ l = 1 l = 1 c k ∆ t ∇ · F e ( W n ) − ( 1 − θ k ) c k ∆ t ∇ · F i ( W n , k ) , − ( 1 − θ k ) ˜ ∑ ∑ W n + 1 = W n − θ s + 1 ∆ t ˜ b k ∇ · F e ( W n , k ) − θ s + 1 ∆ t b k ∇ · F i ( W n , k ) k = 1 k = 1 − ( 1 − θ s + 1 ) ∆ t ∇ · F e ( W n ) − ( 1 − θ s + 1 ) ∆ t ∇ · F i ( W n + 1 ) .

  82. 51/57 3 combination, we obtain the following result. Theorem : The third-order scheme with convex combination is and under the CFL condition Applying the proof to the third-order scheme with convex L ∞ stability of the third-order convex combination L ∞ -stable provided that √ θ 4 < ( 3 γ − 1 )( 3 γ 2 + 1 ) θ 3 = 3 γ − 1 γ � 3 , θ 1 = 1 , θ 2 = 1 , 6 γ 2 , , 18 γ 3 18 γ 3 θ 4 − ( 3 γ − 1 )( 3 γ 2 + 1 ) λ � ( 3 γ − 1 )(( 6 γ 2 + 1 ) θ 4 − ( 3 γ 2 + 1 )) . Next step : fjnd optimal values of γ , θ 4 and λ .

  83. 16 4 11 4 52/57 0 3 0 0 5 1 0 0 1 0 2 0 4 11 4 0 0 5 1 0 0 5 1 We get a tradeofg between CPU time ( ) and precision ( )! 16 1 1 and 8. 2. Then, the following bounds hold: 0 4 7 16 0 7 7 3. Introduce 0 1 and recast these inequalities as follows: 4 7 16 and L ∞ stability of the third-order convex combination 1. The value of θ 3 is maximal for γ = 2 3, and we get θ 3 = 3

  84. 52/57 0 4 0 5 1 0 0 1 0 2 0 3 4 16 0 0 5 1 0 0 5 1 We get a tradeofg between CPU time ( ) and precision ( )! 0 11 16 1 and 16 7 4 0 1 and recast these inequalities as follows: 3. Introduce 1 8. 2. Then, the following bounds hold: and L ∞ stability of the third-order convex combination 1. The value of θ 3 is maximal for γ = 2 3, and we get θ 3 = 3 0 < λ < 7 − 16 θ 4 0 < θ 4 < 7 . 7 − 11 θ 4

  85. 52/57 0 0 5 0 0 1 0 2 0 3 0 4 and 4 0 5 0 1 0 0 5 and 16 1 2. Then, the following bounds hold: 8. We get a tradeofg between CPU time ( ) and precision ( )! 1 L ∞ stability of the third-order convex combination 1. The value of θ 3 is maximal for γ = 2 3, and we get θ 3 = 3 0 < λ < 7 − 16 θ 4 0 < θ 4 < 7 . 7 − 11 θ 4 3. Introduce α ∈ ( 0 , 1 ) and recast these inequalities as follows: 1 − α θ 4 = 7 16 α λ = 16 α. 1 − 11

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend