high precision luminosity at e e colliders theory status
play

Highprecision luminosity at e + e colliders: theory status and - PowerPoint PPT Presentation

Highprecision luminosity at e + e colliders: theory status and challenges Guido Montagna Dipartimento di Fisica, Universit` a di Pavia & INFN, Sezione di Pavia guido.montagna@pv.infn.it September 2015 Ustron, Matter to the Deepest


  1. High–precision luminosity at e + e − colliders: theory status and challenges Guido Montagna Dipartimento di Fisica, Universit` a di Pavia & INFN, Sezione di Pavia guido.montagna@pv.infn.it September 2015 Ustron, Matter to the Deepest Based on work with C.M. Carloni Calame, O. Nicrosini, F. Piccinini et al. G. Montagna, Pavia University & INFN (Dipartimento di Fisica, Universit` a di Pavia & INFN, Sezione di Pavia guido.montagna@pv.infn.it September 2015 1 / 16 Theory review on luminosity

  2. Luminosity at e + e − colliders: Bhabha scattering � Luminosity L : machine parameter underlying any cross section measurement σ = N L � At e + e − colliders, L can be precisely determined using an appropriate reference process N obs L = σ theory N obs : small exp. error σ theory : precise theory input � Best reference process: QED Bhabha scattering e + e + e − e − γ γ e + e + e − e − LEP: small–angle Bhabha Flavor factories: large–angle Bhabha TLEP/ILC/CEPC G. Montagna, Pavia University & INFN (Dipartimento di Fisica, Universit` a di Pavia & INFN, Sezione di Pavia guido.montagna@pv.infn.it September 2015 2 / 16 Theory review on luminosity

  3. The quest for precision Flavor factories ⊲ Luminosity measured with 0 . 1 ÷ 1% precision → g − 2 and ∆ α had ( q 2 ) ⊲ Measurement of σ had − a µ . a exp . − a th . ∼ 3 − 4 σ = ( g − 2) µ / 2 µ µ M exp . − M SM ∼ 2 σ M W : W mass W W LEP ⊲ Luminosity measured with sub–per mille precision ⊲ Measurement of σ 0 had − → number of neutrinos N exp . − 3 ∼ 2 σ (theory dominated) ν G. Montagna, Pavia University & INFN (Dipartimento di Fisica, Universit` a di Pavia & INFN, Sezione di Pavia guido.montagna@pv.infn.it September 2015 3 / 16 Theory review on luminosity

  4. Luminosity and radiative corrections � Precision luminosity − → precision calculations , including QED radiative corrections � QED corrections enhanced by large collinear logarithms L = ln( Q 2 /m 2 e ) α 0 LO NLO αL α 1 2 α 2 L 2 1 2 α 2 L 1 2 α 2 NNLO � ∞ � ∞ h.o. α n n ! L n α n n ! L n − 1 · · · n =3 n =3 L = log( s/m 2 e ) ≃ 15 Large–angle Bhabha at flavor factories L = log( | t | /m 2 e ) ≃ 17 Small–angle Bhabha at LEP and TLEP– Z L = log( | t | /m 2 Small–angle Bhabha at TLEP above t¯ e ) ≃ 20 t threshold � Monte Carlo generators needed for ⊲ realistic simulations ⊲ data–theory comparison under complex event selection criteria G. Montagna, Pavia University & INFN (Dipartimento di Fisica, Universit` a di Pavia & INFN, Sezione di Pavia guido.montagna@pv.infn.it September 2015 4 / 16 Theory review on luminosity

  5. Monte Carlo generators: theoretical ingredients � Monte Carlo ingredients � Fixed–order: complete NLO corrections � QED resummation: collinear Structure Functions, Parton Shower, exclusive exponentiation (YFS) � Matching: NLO ⊗ resummation − → partial inclusion of O ( α 2 L ) photonic corrections at NNLO � Vacuum polarization � Z − exchange diagrams (high energies) set up a. b. c. d. δ NLO − 11 . 61 − 14 . 72 − 16 . 03 − 19 . 57 δ non - log − 0 . 34 − 0 . 56 − 0 . 34 − 0 . 56 NLO δ HO 0 . 39 0 . 82 0 . 73 1 . 44 δ α 2 L 0 . 04 0 . 08 0 . 05 0 . 10 δ VP 1 . 76 2 . 49 4 . 81 6 . 41 Size of radiative corrections (in per cent) to the Bhabha cross section at meson factories from BabaYaga@NLO. Bare e + /e − a. / b. √ s ≃ 1 GeV , E min = 0 . 8 E beam , ξ max = 10 ◦ , 20 ◦ < θ ± < 160 ◦ / 55 ◦ < θ ± < 125 ◦ c. / d. √ s = 10 GeV , E min = 0 . 8 E beam , ξ max = 10 ◦ , 20 ◦ < θ ± < 160 ◦ / 55 ◦ < θ ± < 125 ◦ G. Montagna, Pavia University & INFN (Dipartimento di Fisica, Universit` a di Pavia & INFN, Sezione di Pavia guido.montagna@pv.infn.it September 2015 5 / 16 Theory review on luminosity

  6. Luminosity at flavor factories: generators Luminosity measured with 0 . 1 ÷ 1% precision using large–angle Bhabha (and e + e − → γγ ) as reference process, simulated with two independent generators Generator Processes Theory Accuracy e + e − , γγ, µ + µ − BabaYaga 3.5 QED Parton Shower ∼ 0 . 5% e + e − , γγ, µ + µ − BabaYaga@NLO O ( α ) + QED PS ∼ 0 . 1% e + e − BHWIDE O ( α ) YFS ∼ 0 . 1% e + e − , γγ, µ + µ − MCGPJ O ( α ) + coll. SF ∼ 0 . 2% Reference MC – Babayaga@NLO � BabaYaga 3.5/BabaYaga@NLO http://www2.pv.infn.it/˜hepcomplex/babayaga.html Used by BaBar, Belle, BESIII, CLEO, KEDR and KLOE. Carloni Calame et al. , 2000 / 2006 � BHWIDE http://placzek.web.cern.ch/placzek/bhwide/ Used by BaBar, BESIII, KEDR, KLOE and SND. Jadach, Placzek and Ward, 1997 � MCGPJ http://cmd.inp.nsk.su/˜sibid/ Used by CMD, Belle and SND. Arbuzov et al. , 2005 / Eidelman et al. , 2011 G. Montagna, Pavia University & INFN (Dipartimento di Fisica, Universit` a di Pavia & INFN, Sezione di Pavia guido.montagna@pv.infn.it September 2015 6 / 16 Theory review on luminosity

  7. Sources of uncertainty and Bhabha at NNLO in QED � Sources of uncertainty : ⊲ Technical precision: bugs, approximations in numerical algorithms ... ⊲ Theoretical precision: vacuum polarization (parametric, driven by σ had ) and incomplete NNLO corrections � NNLO QED corrections to Bhabha available − → benchmark for MC accuracy � Photonic corrections (dominant contribution) Penin, 2005 / 2006 Becher and Melnikov, 2007 � Electron loop corrections Bonciani et al. , 2004 / 2005 Actis et al. , 2007 � Heavy fermion and hadronic loops Becher and Melnikov, 2007 / Bonciani et al. , 2008 Actis et al. , 2008 / K¨ uhn and Uccirati, 2009 � Soft+Virtual corrections to hard bremsstrahlung Jadach, Ward et al. , 1996, 2001 Actis et al. , 2010 G. Montagna, Pavia University & INFN (Dipartimento di Fisica, Universit` a di Pavia & INFN, Sezione di Pavia guido.montagna@pv.infn.it September 2015 7 / 16 Theory review on luminosity

  8. Comparison to NNLO: accuracy of BabaYaga@NLO � NNLO Photonic (Penin) Carloni Calame et al. , 2006 5 NF=1 4 photonic ⊲ δσ . = σ NNLO Penin − σ NNLO fit 3 BabaYaga@NLO fit 2 δσ ≤ 0 . 2 � σ LO 1 δσ (nb) ⊲ δσ/σ LO ∝ α 2 L and infrared–safe 0 -1 -2 -3 -4 -5 1e-10 1e-09 1e-08 1e-07 1e-06 1e-05 1e-04 0.001 0.01 m e (GeV) � Leptonic and hadronic pairs Carloni Calame et al. , 2011 √ s σ BY (nb) S e + e − [ � ] S lep [ � ] S had [ � ] S tot [ � ] KLOE 1.020 NNLO -3.935(5) -4.472(5) 1.02(4) -3.45(4) BabaYaga 455.71 -3.445(2) -4.001(2) 0.876(5) -3.126(5) BES 3.650 NNLO -1.469(9) -1.913(9) –1.3(1) -3.2(1) BabaYaga 116.41 -1.521(4) -1.971(4) -1.071(4) -3.042(5) BaBar 10.56 NNLO -1.48(2) -2.17(2) -1.69(8) -3.86(8) BabaYaga 5.195 -1.40(1) -2.09(1) -1.49(1) -3.58(2) Belle 10.58 NNLO -4.93(2) -6.84(2) -4.1(1) -10.9(1) BabaYaga 5.501 -4.42(1) -6.38(1) -3.86(1) -10.24(2) ⊲ BabaYaga@NLO accuracy (well) below 1 � G. Montagna, Pavia University & INFN (Dipartimento di Fisica, Universit` a di Pavia & INFN, Sezione di Pavia guido.montagna@pv.infn.it September 2015 8 / 16 Theory review on luminosity

  9. Luminosity at flavor factories: total theoretical uncertainty Updated from: Actis et al. , EPJ C66 (2010) 585 arXiv:0912.0749 Source of unc. (%) 1–2 GeV BESIII BaBar/Belle Vacuum Polarization 1 | δ VP | [Jegerlehner] — 0.01 0.03 | δ VP | [HMNT] 0.02 0.01 0.02 NNLO | δ α 2 photonic | 2 0.02 0.02 0.02 | δ α 2 pairs | 3 0.03 0.02 0 . 03 ÷ 0 . 07 | δ α 2 SV , H | 4 0.05 / 0.03 0.05 / 0.03 0.05 / 0.03 | δ α 2 HH | — — — | δ total | quadrature 0 . 07 / 0 . 05 0 . 06 / 0 . 04 ∼ 0 . 07 ÷ 0 . 09 ⊲ Comparable to luminosity theoretical uncertainty at LEP ⊲ In proximity of ψ / Υ ’s resonances, accuracy deteriorates: L affected by σ had uncertainty! 1From ∆ α had ( q 2 ) ± δ had , δ had returned by VP parameterization. 2Carloni Calame et al. , 2006: BabaYaga@NLO vs. NNLO photonic by Penin 3Carloni Calame et al. , 2011: BabaYaga@NLO vs. NNLO (leptonic and hadronic) pairs by DESY Zeuthen – Katowice 4Estimated from LEP studies by Jadach, Ward et al. Conservative, WG Report / Less conservative, Jadach et al. 1999, 2001 G. Montagna, Pavia University & INFN (Dipartimento di Fisica, Universit` a di Pavia & INFN, Sezione di Pavia guido.montagna@pv.infn.it September 2015 9 / 16 Theory review on luminosity

  10. TLEP and luminosity The TLEP Design Study Working Group , M. Bicer et al. JHEP 1401 (2014) 164, arXiV:1308.6176 TLEP : e + e − circular collider at c.m. energies from 90 to 350 GeV for SM precision tests after the Higgs discovery ⊲ √ s ≃ 90 GeV: Z pole (Tera Z ) ⊲ √ s ≃ 160 GeV: W W threshold (Oku W ) ⊲ √ s ≃ 240 GeV: ZH production threshold ⊲ √ s ≃ 350 GeV: t¯ t threshold (MegaTop) LEP experience will be the benchmark for future theoretical work, with accuracy at 10 − 4 level G. Montagna, Pavia University & INFN (Dipartimento di Fisica, Universit` a di Pavia & INFN, Sezione di Pavia guido.montagna@pv.infn.it September 2015 10 / 16 Theory review on luminosity

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend